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Laser-assisted firing (LAF) technology, such as laser-enhanced contact optimization (LECO), is increasingly
utilized in the mass production of tunnel oxide passivated contact (TOPCon) solar cells. However, concerns
regarding the thermal stability of LAF TOPCon remain. This study systematically evaluates the thermal stability
of LAF TOPCon cells at both the moderate temperatures encountered during module fabrication and a higher
temperature of 450 °C. While soldering did not have a negative impact on cell performance, lamination resulted
in a ~0.29 % absolute power conversion efficiency (PCE) loss, primarily due to a reduction in fill factor (FF). The
degradation is driven mainly by an increase in Jyy-like recombination, likely in the space charge region. A 1-min
one-sun light soaking at room temperature effectively restores cell performance, suggesting that field operation
effectively mitigates such degradation. Under repeated 450 °C rapid thermal annealing and LAF cycles, initial FF
and PCE losses (~21.6 % and ~6.7 % absolute, respectively) are attributed to contact deterioration, but per-
formance is restored through subsequent LAF treatment. Based on these findings, a three-state defect model and
contact degradation mechanisms are proposed. These findings provide new insights into the reliability of LAF

TOPCon cells and highlight key considerations for industrial processing and module reliability testing.

1. Introduction

The Tunnel Oxide Passivated Contact (TOPCon) technology
currently dominates the photovoltaic (PV) market, owing to a high
power conversion efficiency (PCE) and low manufacturing costs. Based
on the latest International Technology Roadmap for Photovoltaics
(ITRPV) [1], the TOPCon technology now has a market share of ~60 %
which is predicted to increase further in the next five years. Researchers
and PV manufacturers are still pushing the boundaries of TOPCon
technology, with significant progress reported recently [2-6]. The cur-
rent world record efficiency for commercial large-size TOPCon solar
cells is 26.4 % [7]. Despite the impressive advancements in TOPCon
technology, further enhancing the PCE of TOPCon solar cells without
sacrificing the reliability of PV devices remains a key focus for the PV
industry.

In recent years, laser-assisted firing (LAF) techniques, such as laser-
enhanced contact optimization (LECO), have attracted significant
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interest [8-11] and have already been widely adopted in TOPCon pro-
duction lines [12,13]. The LAF process consists of a high-intensity laser
scanning process on the front, combined with an applied reverse bias.
The process induces localized heating at the metal-silicon interface, as
the photogenerated current is confined to regions with initially rela-
tively low contact resistance. This selective current flow leaves the
remaining interface passivated by the dielectric stack, resulting in
improved contact structure [14-19] and significantly higher PCE for
TOPCon solar cells than those processed with a traditional single-step
firing process. Our recent work [13] demonstrates that the utilization
of LAF process can effectively reduce both front and rear contact
recombination in TOPCon solar cells and lead to an increase in V,. of
more than 10 mV. The enhancement in both efficiency and damp-heat
stability was also successfully shown on commercial LAF TOPCon
solar cells [12,20,21].

Nevertheless, some concerns remain regarding the stability of LAF
TOPCon solar cells, particularly under thermal stress. Xie et al. [22]
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reported a severe contact issue when LAF TOPCon cells were subjected
to a second high-temperature firing at temperatures above 500 °C.
Notably, the PCE of their TOPCon solar cells reduced to only 1.15 % after
a second firing at 680 °C, indicating that the LAF cells are highly ther-
mally sensitive. Additionally, recent work [23] identified a new failure
mode in LAF TOPCon solar cells, revealing that thermal stress at 400 °C
combined with a reverse bias can significantly increase the contact
resistance and result in a decrease of PCE. These findings suggest that
certain thermal conditions can be extremely detrimental to LAF TOPCon
solar cells. The conditions examined in these studies, particularly the
high temperatures and applied reverse bias, are unlikely to occur after
LAF in cell/module production lines or under normal operation condi-
tions. However, they still provide valuable insight into the potential
failure mechanisms of LAF cells. Therefore, to deepen the understanding
of previously reported failure models, it is worth further investigating
the thermal stability of LAF contacts, in particular for conditions expe-
rienced by the solar cell under module fabrication.

This work investigates the thermal stability of LAF TOPCon solar
cells under both moderate and high-temperature conditions. Moderate
thermal stress, which can be referred to as cell-to-module (CTM) loss
after soldering and lamination, is simulated using a 10-s one-sun light
soak at 350 °C and a 15-min dark anneal at 150 °C. A series of annealing
and light soaking cycles was conducted to assess degradation and re-
covery behaviour. Notably, a 1-min one-sun light soaking at room
temperature is found to effectively restore the performance after
degradation, indicating that this thermal-induced CTM loss may be
negligible for modules under real operation conditions. In addition, the
stability of LAF cells under slightly higher temperatures was evaluated
by subjecting samples to cycles of a rapid thermal annealing (RTA)
process at 450 °C, followed by a LAF process. Based on the experimental
results, a defect transformation model and refined mechanisms for
contact deterioration are proposed to explain the thermal response of
LAF cells under moderate and high thermal conditions.

2. Methodology

The structure of the TOPCon solar cells used in this work is shown in
Fig. 1 (a). G10 (182.2 x 183.75 mm) n-type silicon substrates with a

Solar Energy Materials and Solar Cells 297 (2026) 114124

thickness of 130 pm and a resistivity of 1 Q cm were used. All wafers
were subjected to standard cleaning and alkaline texturing to form
surface pyramids. Boron diffusion was employed to create the front-side
p' homogenous emitter. On the rear side, a tunnelling SiOy layer and
phosphorus-doped polycrystalline silicon (n™ poly-Si) were grown using
plasma oxidation and plasma-assisted in situ doping (POPAID). Surface
passivation was completed with atomic layer deposited (ALD) AlOy and
plasma-enhanced chemical vapor deposited (PECVD) SiNy layers on the
front, and a PECVD SiNy layer on the rear. The commercial paste and
laser-assisted firing (LAF) process were applied for solar cell
metallization.

This study comprehensively investigates the thermal stability of LAF
TOPCon solar cells under both moderate- and high-temperature stress.
The moderate-temperature thermal test was conducted to assess cell-to-
module (CTM) losses. Therefore, two key module fabrication steps,
soldering and lamination, were selected as the test conditions. As shown
in Fig. 1 (b), one group of cells underwent both processes, while another
experienced only lamination for comparison. One-sun current-voltage
(I-V) measurements were used to track performance after each step. To
isolate thermal effects, soldering was applied without ribbons or flux,
and lamination was conducted using only glass and fiberglass fabrics. To
enhance experimental practicality in subsequent trials, soldering was
emulated by a 10-s one-sun light soaking at 350 °C (actual peak tem-
perature at 230 °C for 3 s), and lamination by a 15-min dark annealing at
150 °C. These conditions were validated to replicate the real thermal
stress during module fabrication, using halogen lamps with a hotplate
and a thermal oven, respectively.

Moreover, the high-temperature stability was evaluated by rapidly
annealing samples at 450 °C (actual peak temperature at 430 °C for 3 s),
followed by a LAF process. Additional cycles of RTA and LAF were
conducted to assess repeatability, with one-sun I-V measurements
recorded after each step as well.

The Suns-Voc and one-sun I-V measurements were performed using
Sinton Instruments FCT650/750 I-V testers. Electroluminescence (EL)
images were captured by an ASICCN SCSS EL tool. A BTi (LIS-R3)
luminescence imaging system conducted photoluminescence (PL) mea-
surement, with a high-V, lens. Open-circuit PL images were taken under
1 sun, 0.1 sun, and 0.05 sun to evaluate injection-dependent
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Fig. 1. (a) The schematic of the LAF TOPCon solar cell, as well as the experimental flow chart of the stability test (b) under the thermal conditions during soldering

and lamination, and (c) under the high-temperature RTA and LAF cycles.
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recombination, with exposure times scaled accordingly to ensure similar
levels of PL counts. Short-circuit PL images were also acquired to locate
recombination sites. All PL images were processed using ImageJ [24].

3. Results and discussions
3.1. CTM loss caused by thermal process

Fig. 2 illustrates the I-V parameters of LAF TOPCon solar cells under
two different thermal conditions: soldering + lamination (blue-green
line) and lamination only (orange line), as illustrated in Fig. 1 (b). Fig. 2
(a) shows that the samples that only underwent lamination exhibited a
decline in PCE (~0.29 %gps), while the PCE of the soldering + lamina-
tion group increased slightly (~0.06 %gbs) after soldering but then
decreased significantly after lamination. Fig. 2 (c) and (d) shows a ~1.5
mV reduction in V,. and ~0.66 %,ps decrease in FF for the lamination
group. Moreover, samples subjected to both soldering and lamination
showed a moderate increase in V,, after soldering, which is potentially
due to hydrogen passivation of preexisting defects during light soaking,
but followed by a severe decrease after lamination. Like the V., the FF of
the soldering + lamination group also improved slightly after soldering,
but then reduced significantly after lamination. However, the Jy. of both
groups shown in Fig. 2 (b) remains relatively stable, with only a minor
decrease observed after the lamination process.

In summary, both groups exhibited consistent performance degra-
dation after the lamination process, primarily due to the decrease in FF,
followed by a smaller decline in V. This indicates a potential CTM loss
induced by the thermal stress associated with the lamination process.
Additionally, the corresponding thermal performance of TOPCon cells
produced without LAF technology is also provided in Section 3.5.1 to
support the mechanism discussion.

3.2. Detailed analysis of moderate thermal stability

3.2.1. IV and Suns-V,, results under thermal process

Since the degradation was only observed during the lamination
process, dark annealing tests at three different temperatures (150 °C,
180 °C, and 250 °C) were conducted to further investigate the thermal
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stability. Notably, the 150 °C dark annealing is a representative condi-
tion to emulate the actual lamination process.

After the 150 °C dark annealing test, the PCE of LAF TOPCon solar
cells in Fig. 3 (a) initially reduced by ~0.28 %,ps, followed by a gradual
recovery. This can be attributed to V,. and FF, both of which exhibited
similar degradation and recovery trends in Fig. 3 (c¢) and 3 (d), respec-
tively. In contrast, Js. shown in Fig. 3 (b) remained relatively stable
throughout the annealing duration. As discussed in Section 3.1, the
degradation was primarily attributed to the loss of FF. Therefore, further
analysis of the multiple electrical factors contributing to FF loss is pre-
sented. Fig. 3 (e) illustrates a slight increase in series resistance (Ry)
during 150 °C dark annealing, likely related to the contact resistance at
the sensitive metal-Si contact of LAF cells [22,23]. Additionally, the
pseudo fill factor (pFF), shown in Fig. 3 (f), presented a degradation and
recovery trend consistent with the curves of PCE, V,. and FF. Fig. 3 (g)
compares the AFF-ApFF (representing the Rs-induced FF loss) with the
absolute change in pFF (ApFF) after 150 °C dark annealing. The results
indicate that the initial FF degradation can mainly be attributed to a
reduction in pFF, while the impact of R; became more significant after
~240 min of dark annealing. Additionally, Fig. 3 (h) and (f) show Jy;
and Jyg, which were extracted from the Suns-V,, measurements using a
double-diode model. Since Jy; primarily reflects recombination at a
high-injection level, the observed increase and subsequent reduction
showed good agreement with the trends of V. Similarly, the perfor-
mance of pFF could be primarily attributed to a change in Jyz, which is
more apparent in low minority carrier concentrations [25].

Samples annealed at higher temperatures (180 °C and 250 °C)
exhibited similar degradation and recovery trends to those annealed at
150 °C. However, elevated temperatures significantly accelerated both
the degradation and recovery processes and reduced the overall extent
of degradation. These results suggest that degradation and recovery
occurred simultaneously [26-28] and performed as competing mecha-
nisms during dark annealing. By the end of the test, the V,, of samples
annealed at 180 °C and 250 °C surpassed their initial values, consistent
with the lower final Jy; value. During the 250 °C annealing, Jy, started
to recover after just 2 min, leading to a full recovery of pFF by the end of
the process. Notably, during the latter stages of annealing at 250 °C, the
PCE exhibited a gradual degradation, primarily due to a reduction in FF,
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Fig. 2. Absolute variations of the one-sun (a) PCE, (b) Js, (c) V,, and (d) FF values of the TOPCon solar cells after the soldering and lamination process.
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Fig. 3. Absolute variations of one-sun I-V parameters of TOPCon solar cells during dark annealing at 150 °C, 180 °C, and 250 °C, respectively.

which was caused by a faster increase in R; with extended annealing
time.

In summary, the thermal degradation of LAF TOPCon solar cells
during the lamination-like dark annealing process was primarily due to
the FF loss, which was dominated by changes in pFF. The degradation in
PFF, in turn, was mainly attributed to non-ideal (Jyz-like) recombina-
tion, such as edge recombination [29-32] and space charge region (SCR)
recombination [25,33]. Additionally, the apparent increase in the
extracted Jp; may also be due to the injection-level dependence
recombination in the bulk or at the silicon interfaces [34-36]. Therefore,
it is necessary to investigate the sites of the recombination and the
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underlying mechanism responsible for the observed degradation.

3.2.2. Open-circuit (OC) and short-circuit (SC) photoluminescence images

As thermal degradation is primarily driven by carrier recombination,
photoluminescence (PL) imaging was conducted to examine changes in
effective carrier lifetime following 150 °C dark annealing. Open-circuit
PL (OC-PL) images in Fig. 4(a) show minor degradation under 1 sun
excitation intensity, but significantly lower lifetimes at lower injection
levels (0.1 and 0.05 sun), indicating strong injection-dependent
recombination. The differential images (Initial — Annealed) further
confirm that the incremental recombination was highly injection-
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Fig. 4. (a) Open-circuit PL [at 1, 0.1, and 0.05 sun] and (b) short-circuit PL of TOPCon solar cells before and after 15 min dark annealing at 150 °C.
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dependent, aligning with the V,, and pFF decrease observed in Fig. 3.
The observed lifetime degradation across the whole cell suggests that
edge recombination is not the primary cause.

To locate the recombination site, short-circuit PL (SC-PL) imaging
was also performed. Since the minority carrier concentration at the edge
of the p—n junction depends exponentially on the applied voltage [37], it
becomes negligible at the front surface under short-circuit conditions.
Consequently, the SC-PL image only reflects the carrier lifetime in the
bulk and rear regions in our cells [38,39]. As shown in Fig. 4(b), no
notable change (<1 % variation) was observed before and after
annealing, indicating that degradation occurred predominantly in the
front region—namely the front surface, emitter, and p-n junction.
Combined with the increase in Jy, (Fig. 3), these results strongly suggest
that space charge region (SCR) recombination is the primary cause of the
observed degradation.

3.3. Effect of dark annealing and light soaking

To better understand the degradation and recovery behaviour, the
changes in sample performance during the dark annealing and light
soaking tests were systematically analyzed. The V,. and pFF, which are
closely linked to the incremental recombination, were selected as the
representative parameters in this study. 10-s 350 °C one-sun light
soaking (LS) and 15-min 150 °C dark annealing (DA) treatments were
employed to simulate the thermal conditions during the actual soldering
and lamination process, respectively.

3.3.1. Effect of dark annealing pretreatment

The results in Section 3.2.1 indicate that extended annealing the
samples after the lamination process (simulated by a 15-min 150 °C dark
annealing) or increasing the temperature of lamination could effectively
minimize the CTM loss caused by the thermal stress. However, previous
studies on light- and elevated temperature-induced degradation (LeTID)
suggest that applying a pre-annealing treatment [40-43] prior to mod-
ule assembly could be an effective approach to mitigating thermal
degradation. In this work, the samples were pre-annealed at 250 °C for
15 min. As illustrated in Fig. 3, this process should enable the degra-
dation and recovery cycle to be completed in advance without signifi-
cantly sacrificing performance due to an increase in R;.

Fig. 5 shows that a 15-min 250 °C DA process improved both V,. and
PFF, likely due to the passivation of pre-formed defects in the sample
after the metallization process. For the pre-annealed samples (Pre_DA),
no significant degradation in V,. and pFF could be observed after the
subsequent 15-min 150 °C DA (orange line), indicating the stabilizing
effect of the 250 °C DA pretreatment. However, samples subjected to a
250 °C pre-annealing followed by a 10-s light soaking at 350 °C (Pre_DA
+ LS) exhibited a significant reduction in V,. and pFF after the 150 °C DA
step (black line). Although the final performance of the Pre DA + LS
sample was slightly better than the reference sample (blue-green line),
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thanks to the temporary benefits of the 250 °C DA and 350 °C LS steps,
significant pFF degradation still occurred after the whole process.
Therefore, these results suggest that while 250 °C DA can initially sta-
bilize defects, the subsequent soldering step may destabilize them,
leading to “renewed” degradation during the lamination process.

3.3.2. Dark annealing and light soaking cycles

Although the 250 °C pre-annealing step showed a stabilizing effect, it
did not fully eliminate the CTM loss due to the reactivation of defects
during the interval light soaking. This highlights the need to further
investigate the underlying mechanisms. As a result, repeated test cycles
were carried out, each consisting of a 15-min 250 °C dark annealing
(DA), a 10-s 350 °C one-sun light soaking (LS), and a 15-min 150 °C DA.
The changes in V. and pFF during the corresponding process are shown
in Fig. 6(a) and (b), respectively. The initial 150 °C DA led to ~2.2 mV
reduction in V,, and ~0.5 %;gps decrease in pFF. This degradation was
fully recovered by a subsequent 250 °C annealing, resulting in V,. and
PFF values being even higher than their initial values. As explained
earlier, this can be attributed to the passivation of some preexisting
defects that were present after the metallization process. Afterwards, a
350 °C LS was applied to the samples to destabilize defects, followed by
a second 150 °C DA, which again led to a degradation of both V,. and
PFF. However, the relative degradation from the initial states was less
severe than compared to the first 150 °C DA, indicating that at least parts
of the passivated preexisting defects were not reactivated during the LS
process. With the repetition of the cycles, the extent of both degradation
and recovery was relatively consistent. Those results suggest that the
light soaking process predominantly destabilized the defects passivated
during the dark annealing process, rather than generating new active
defect centers from a reservoir of recombination-inactive precursor
state, as proposed in earlier studies [44].

3.3.3. Possible solutions under operational conditions

Since the pre-annealing method could not fully resolve the CTM
issue, the effect of a light soaking step after the lamination process was
further investigated and plotted in Fig. 7. Consistent with previous re-
sults, both V,. and pFF showed a notable decline after the 150 °C DA.
However, a 1-min one-sun light soaking at room temperature completely
recovered the degradation, with V,. even exceeding its initial value.
Subsequently, the samples were stored in a nitrogen box under dark
conditions for 12 h. Interestingly, a degradation in V,. and pFF was
observed, though the extent was smaller than that after the 150 °C DA.
Repeating the LS process once more fully restored the parameters, and
the degradation after the second dark storage cycle was even less pro-
nounced than after the first.

These findings suggest that a brief light soaking treatment can
effectively mitigate the CTM loss induced by the thermal stress during
lamination, and thus, this CTM loss would not be apparent in field
conditions. Despite the reversible degradation observed during dark
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Fig. 5. The absolute variations in the one-sun (a) V,, and (b) pFF values of TOPCon solar cells after 250 °C dark annealing (DA) and/or 350 °C light soaking (LS)

process, followed by a 15 min of 150 °C dark annealing.
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storage, solar modules can readily self-recover upon exposure to sun-
light. Interestingly, the recovery during light soaking and the degrada-
tion after dark storage closely resemble the behaviour observed in
samples subjected to ultraviolet-induced degradation (UVID) light
[45-47], suggesting a possible connection or similarity in the underlying
mechanisms. These results underscore the importance of properly
timing module characterization, especially for newly unpacked mod-
ules, to ensure measurements accurately reflect field performance under
real operating conditions.

3.4. Degradation caused by high-temperature RTA

Apart from assessing the cell performance under moderate thermal
conditions, this study also evaluates the stability of LAF cells under high-
temperature RTA processes. Fig. 8 presents the one-sun I-V parameters
of LAF TOPCon solar cells subjected to 450 °C RTA and LAF cycles, as
outlined in Fig. 1 (c). As shown in Fig. 8 (a), a significant reduction in
PCE (~6.7 %aps) could be observed on samples after a 450 °C RTA
process. The degradation of the PCE could be primarily attributed to the
remarkable ~21.6 %gps reduction in FF in Fig. 8 (d), due to a rapid in-
crease in series resistance (R;). The slight reduction in J;. (~0.56 mA/
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Fig. 8. Absolute variations of one-sun (a) PCE, (b) Js, (c) V., (d) FF, (e) Ry, and (f) pFF values of TOPCon solar cells during the 450 °C RTA and LAF cycles, as

outlined in Fig. 1 (c).



X. Wang et al.

cm?) also demonstrated a deterioration in carrier-collection ability after
the RTA process. In contrast, both V,. and pFF remained relatively sta-
ble, suggesting no notable recombination loss.

A subsequent LAF process effectively recovered the Jg, R; and FF of
samples, thereby restoring the overall PCE. Those results align well with
the previous finding [22] showing that high-temperature firing in-
creases the contact resistance of LAF-formed contacts, which can be
reversed by the LAF process. A second 450 °C RTA process again reduced
the PCE, however, to a less extent of degradation. J;, remained nearly
unchanged, and FF only decreased by ~9.8 %gps, due to the small in-
crease in R;. Afterwards, the overall performance could be recovered by
the LAF process. Interestingly, a third 450 °C RTA process showed
similar degradation to the second, while the subsequent LAF treatment
could again restore the performance of samples.

The degradation of the metal-Si contact can also be evaluated by the
EL images in Fig. 9. After the first RTA process, the EL image shows dark
patterns, likely due to poor electrical contact. Moreover, the contact
deterioration was less severe after the second and third RTA processes,
which is consistent with the I-V results in Fig. 8. Therefore, the I-V and
EL results suggest that the high-temperature RTA process induces
deterioration of the metal-Si contact, resulting in a significant increase
in R, and consequently a reduction in FF. However, this degradation can
be effectively reversed through the LAF process. Notably, the degrada-
tion caused by the following RTA process is less serious, implying that
the contact deterioration is not completely reproducible across the RTA
and LAF cycles.

3.5. Proposed thermal stability mechanisms

3.5.1. Hydrogen-related degradation

To the best of our knowledge, similar CTM losses caused by thermal
degradation during lamination were not reported prior to the adoption
of LAF technology. To explore the underlying mechanism, TOPCon solar
cells fabricated using the LAF technique were compared with those
fabricated using a traditional single-step baseline (BL) firing. Notably,
the implementation of LAF has resulted in most TOPCon manufacturers
eliminating the selective emitter (SE) from the front side. Fig. 10 pre-
sents the evolution of I-V parameters for samples with different emitter
configurations processed using either LAF or BL technology. In this
comparison, SE-BL refers to selective emitter precursors processed with
the baseline metallization, while SE-LAF and HE-LAF correspond to se-
lective emitter and homogeneous emitter (HE) precursors processed
with a commercial LAF technique. The SE and HE precursors were
carefully prepared to exhibit similar sheet resistance in the homoge-
neous regions, but the SE structures included additional localized high-
level doping beneath the metal-Si contacts.

According to Fig. 10, a similar amount of PCE degradation was
observed on both the SE-LAF and HE-LAF samples, primarily driven by
the reduction in FF and V,,. This suggests that the emitter configuration
is unlikely to be the root cause of the induced degradation. In contrast,

1st RTA

Initial
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the SE _BL samples exhibited only minor degradation in PCE (~0.07
%abs), With significantly lower loss in both FF and V,.. These results
reveal that the corresponding thermal degradation during the module
assembly is mainly associated with the utilization of the LAF technique.

Based on the characterization results, a three-state model, inspired
by the one previously reported for BO-related degradation [48,49], is
proposed in Fig. 11 to explain the sample behaviour under moderate
thermal conditions. Notably, this model is used only as a conceptual
framework to describe the activation and recovery dynamics of defects,
rather than implying the involvement of boron-oxygen pairs in the
degradation studied here. In this model, the inactive defects can be
transitioned from the defect precursor state (State A) into a
recombination-active state (State B), resulting in performance degra-
dation. The activated defects may further evolve into a recovered state
(State C), which exhibits relatively stable performance during thermal
treatment in the dark. Importantly, the degradation and recovery pro-
cesses can occur simultaneously, allowing different defect states to
co-exist. Therefore, the observed performance variations during thermal
treatment are associated with the redistribution of defects among
various defect states. The extent of degradation is ultimately determined
by the competition between degradation and recovery rates, both of
which are strongly temperature dependent. Furthermore, States B and C
can also be reversed back to State An under certain light-soaking
conditions.

According to the findings in earlier sections, the activation of the
defects from State A to State B can be triggered by the dark annealing
process at a moderate temperature (e.g. 150 °C). The activated defects
can be temporarily returned to State A via a brief light soaking process at
room temperature. However, the subsequent dark conditions may lead
to partial degradation again. Moreover, under the dark annealing pro-
cess, State B can also be recovered to State C, which remains relatively
stable during further thermal treatment. However, applying a one-sun
light soaking at a relatively higher temperature (e.g. 350 °C) may
destabilize the inactive defects and reactivate them back to State A,
resulting in renewed degradation when subjected to the thermal test
again.

Although further investigation is required to fully understand this
novel defect, some hypotheses can be proposed based on the current
experimental results. The degradation and recovery trends are quite
similar to those previously observed in light- and elevated temperature-
induced degradation (LeTID), carrier-induced degradation (CID) and
ultraviolet-induced degradation (UVID) studies [26,50-55], suggesting
that hydrogen (H) may play a crucial role. Hydrogen is released from the
passivation layer during the firing process and may interact with pre-
existing impurities (e.g. carbon, oxygen) or even vacancies [56-59] to
form recombination-active complexes under certain conditions (dark
annealing in our case). Additionally, hydrogen may also accumulate at
the interfaces, resulting in increased recombination [60]. Moreover, the
hydrogen-induced recombination (HIR) theory proposed by Wenham
et al. [61] suggests that even high concentrations of H alone can lead to

2nd RTA 3rd RTA

191

128

Fig. 9. EL Images of samples at the initial state and after 3 steps of the RTA process, as outlined in Fig. 1 (c).
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Fig. 10. Absolute variations of one-sun (a) PCE, (b) Jy, (c) V,, and (d) FF values of the SE_BL, SE_LAF and HE _LAF solar cells after 15 min of 150 °C dark annealing.
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Fig. 11. The proposed three-state defect model and pathways for the degradation and regeneration in LAF TOPCon solar cells.

degradation in Si solar cells. The continuous charge state transition
between H® and H'/H™ facilitates the recombination due to the loss of
electrons and holes during the process. Furthermore, Nickel et al. [62]
demonstrated that hydrogen atoms can form crystallographic defects.
The active defects may then be dispersed or passivated by the subse-
quent thermal or illumination process, resulting in performance recov-
ery. These mechanisms align well with the degradation and recovery
behaviour observed in our study.

Fig. 10 illustrates that the defect induced under moderate thermal
conditions is strongly linked to, or at least boosted by, the utilization of
the LAF technique. Therefore, although the three-state defect model can
qualitatively describe defect dynamics in both LAF and BL TOPCon cells,
the extent and kinetics of these transitions differ due to the distinct
hydrogen behaviour introduced by the LAF process. In addition to the
firing process, the LAF technology introduces a high-density laser
scanning process combined with an applied reverse bias. Therefore, the
high intensity of laser illumination and induced localized heating [10]
during the process may release additional H into Si. Moreover, a pre-
vious study has reported that hydrogen can migrate from the n-type bulk
to the p-type emitter region under reverse bias [23]. Consequently, a
high concentration of H may accumulate at the emitter region after the

LAF process, leading to thermal-induced recombination at the front,
which is consistent with the deduction from Fig. 4 (b). Therefore,
although the SiNy passivation layers used in both LAF and BL TOPCon
cells are identical and provide similar initial hydrogen reservoirs, the
LAF process can significantly alter the hydrogen distribution. This
redistribution of hydrogen also explains why the LAF-processed TOPCon
cells show higher CTM loss and more severe thermal degradation than
the BL ones shown in Fig. 10. Additionally, the application of the LAF
technique allows for the use of significantly higher emitter sheet re-
sistances in TOPCon solar cells, leading to a correspondingly thinner
emitter region [9]. Therefore, the site of the induced recombination
might be close or even at the p-n junction. This could lead to Jyz-like
recombination [33], which significantly reduces the pFF and PCE as
shown in Fig. 3.

Moreover, the contact degradation during the high-temperature RTA
may also be caused by the accumulation of hydrogen. Previous work
[23] has shown that a 400 °C dark annealing under reverse bias can
significantly increase the contact resistance of LAF cells, suggesting a
potential high-temperature degradation mechanism involving hydrogen
as well. During the high-temperature process, hydrogen may accumulate
at the metal-Si interface, contributing to increased contact resistance
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[63-65]. Notably, the contact formed by LAF process features a signif-
icantly lower contact fraction between the metal and Si [19], potentially
exacerbating the contact properties and increasing the interface sensi-
tivity to hydrogen accumulation. The following LAF process may help
disperse the accumulated hydrogen from the metal-Si interface, thereby
restoring the contact performance. The reduced extent of degradation
observed in subsequent RTA tests may be attributed to hydrogen effu-
sion during the first cycle of RTA and LAF treatment. The current hy-
potheses are just based on the electrical characterization results, more
detailed material-level characterization is expected in future work to
further verify the variations of the hydrogen state induced by LAF
process.

3.5.2. Other possible mechanisms

The degradation under moderate-temperature annealing may also be
associated with some metallic impurities potentially present in the
precursor or pastes of the LAF TOPCon solar cells, which might be either
activated or introduced during the LAF process. Metal precipitates can
diffuse into Si [66,67], form complexes with interstitial impurities,
including H, during the high-temperature process. Subsequent thermal
treatment may cause the complex dissociation and also stabilization of
interstitials [68,69], resulting in the degradation and recovery of the cell
performance.

Regarding the contact degradation after the RTA process, Xie et al.
[22] suggested that high-temperature firing melts the glass frit in the
paste and disrupts the carrier collection path. The LAF process then
reforms the contact structure, thereby restoring carrier collection
capability. While this model effectively explains the observed contact
degradation and recovery, it does not fully account for the reduced
contact deterioration after repeated RTA processes, as shown in Figs. 8
and 9. Therefore, a refined mechanism is still needed.

In general, current collection between the metal and silicon can be
understood via two mechanisms: (1) Direct contact [70], where carriers
are transported through contact between the metal bulk and the silicon,
and (2) Tunnelling transport [71], where carriers pass through nano-Ag
colloids embedded in the interfacial glass layer. Due to the utilization of
customized front paste and LAF technology, the direct carrier collection
in LAF cells predominantly depends on a limited number of direct
contact points at the peaks of the surface pyramid, while the carriers at
most areas (pyramid slopes) are transported via tunnelling [8,14,19].
This unique structure effectively preserves the passivation layer, leading
to improved V,, but also introduces potential risks in the thermal sta-
bility of the metal-Si contact.

During high-temperature RTA, the low-melting-point glass frit
softens [72], potentially altering the pre-formed interface glass structure
[73], while the metal-Si alloy contact remains relatively intact due to
the higher eutectic temperature [74,75]. As a result, the tunnelling
pathway for carrier collection may be destroyed, forcing the cell to rely
primarily on direct contact, which leads to a substantial increase in
contact resistance. A subsequent LAF step can reconstruct the tunnelling
channels by reforming nano-Ag colloids within the glass. At the same
time, some additional direct contact points between metal and silicon
can also be introduced, supported by observations of increased corrosion
at pyramid tips after a second LAF process [22]. Hence, although a
second RTA again disrupts the tunnelling path, the larger number of
remaining direct contacts helps limit the rise in contact resistance. The
similar extent of degradation observed following the third RTA can be
attributed to the saturation of direct contact formation following the
initial RTA and LAF cycle.

4. Conclusion

Laser-assisted firing (LAF) is already widely used in the PV industry.
In this work, the stability of the LAF TOPCon solar cells under both
moderate and high thermal conditions is assessed. Under moderate
thermal stress (temperatures used during module fabrication), no
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degradation is observed after soldering, but lamination results in a
~0.29 % absolute PCE loss, mainly due to a ~0.66 % FF loss and a slight
(~1.5 mV) V, drop. A 10-s 350 °C one-sun light soaking and a 15-min
150 °C dark annealing simulates the soldering and lamination process,
and successfully reproduces the degradation. Subsequent annealing then
gradually restores the performance of degraded samples. Higher
annealing temperatures (180 °C and 250 °C) accelerate both degrada-
tion and recovery, indicating competing degradation and recovery
mechanisms.

Characterization reveals Jyy-like recombination probably in the
space charge region as the primary cause, supported by injection-
dependent PL images taken under short- and open-circuit conditions.
A 250 °C pre-annealing stabilizes the cells, but soldering can reactivate
defects. Cycling tests confirm that the destabilization process reactivates
the passivated defects, instead of generating new defects from a reser-
voir. A 1-min exposure to one-sun illumination at room temperature
fully restores cell performance, indicating a self-healing effect under
field conditions. Nevertheless, partial degradation can occur during dark
storage, highlighting the importance of accounting for both thermal and
illumination histories of modules in reliability assessments. After high-
temperature RTA (450 °C), contact degradation leads to a notable in-
crease in Ry, resulting in a ~21.6 % FF and ~6.7 % PCE loss. Recovery is
achieved via the subsequent LAF process, with reduced degradation in
repeated cycles.

A three-state defect model is proposed, involving transitions between
a defect precursor state, a recombination-active state and a recovered
state. Hydrogen introduced during LAF is identified as a likely contrib-
utor causing recombination at the front junction under moderate stress
and/or accumulating at contacts under high temperatures. Metal pre-
cipitates and contact restructuring in the LAF cells may also play roles in
the observed degradation and recovery. While further investigation is
needed, this study offers crucial insights into LAF-induced reliability
challenges.
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