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discovery of high-efficiency
donor–acceptor pairs in organic photovoltaics via
SolarPCE-Net guided screening

Xingyu Liu,ab Bo Hu,c Pei Liu,d Meng Huang, *a Ming Li,a Yuwei Wan,ef

Bram Hoex g and Tong Xie fg

Organic photovoltaic (OPV) materials possess great potential for accelerating solar energy conversion.

Rapid screening of high-performance donor–acceptor (D–A) materials helps reduce the cost and time

consumption associated with traditional experimental trial-and-error methods. However, for predicting

the power conversion efficiency (PCE) of D–A in OPV, the existing approaches focus on efficiency

prediction of single-component materials and neglect synergistic D–A coupling effects critical to device

performance. Here, we propose the Solar Power Conversion Efficiency Network (SolarPCE-Net), a novel

deep learning-based framework for OPV material screening that captures the intricate dynamics within

D–A pairs. By integrating a residual network with the self-attention mechanism, the SolarPCE-Net

employs a dual-channel architecture to process molecular descriptor signatures of D–A while

quantifying interfacial coupling effects through attention-weighted feature fusion. We apply the

proposed method to the HOPV15 dataset. Experimental results show that our proposed SolarPCE-Net

exhibits certain advantages in terms of accuracy and generalization ability compared to traditional

methods. Interpretability analysis by attention weighting reveals key molecular descriptors that influence

performance. Our work screens undeveloped D–A combinations, demonstrating its potential to

accelerate high-performance OPV material discovery.
1. Introduction

Organic photovoltaic (OPV) materials, as promising green
energy materials, can convert solar energy into electricity
through the photovoltaic effect.1 Due to their low production
cost, mechanical exibility, and compatibility with large-area
manufacturing processes, OPV materials have attracted signif-
icant attention in solar cell applications.2–4 Among the various
performance metrics of OPV devices, power conversion effi-
ciency (PCE) and long-term stability are obviously the most
critical factors determining their commercial viability. Despite
notable advances in molecular design and device engineering,
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the relatively low PCE of OPV devices remains a major bottle-
neck hindering large-scale application.5–8

Traditionally, OPV material development heavily relies on
physical models and empirical formulae.9–11 For example, the
widely adopted Scharber model12 estimates the upper limit of
PCE based on the energy levels of donor's highest occupied
molecular orbital (HOMO) and acceptor's lowest unoccupied
molecular orbital (LUMO). While such models offer valuable
physical insights, they typically require extensive experimental
measurements and computational simulations, which are time-
consuming and inefficient for rapid screening of donor–
acceptor (D–A) pair combinations in the vast chemical space of
OPV materials. To overcome these challenges, machine
learning (ML) has emerged as a powerful tool for establishing
quantitative structure–property relationships (QSPRs) in OPV
materials.13 The ML-based techniques can leverage existing
experimental and computational datasets to efficiently map the
relationship between molecular structures and photovoltaic
performance, signicantly reducing computational costs and
accelerating material discovery. The ML-based techniques can
leverage existing experimental and computational datasets to
efficiently map the relationship between molecular structures
and photovoltaic performance, signicantly reducing compu-
tational costs and accelerating material discovery.44
J. Mater. Chem. A
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In recent years, ML-based models reveal structure–perfor-
mance patterns that may be difficult to capture through tradi-
tional physical models alone and guide material design, which
have made signicant progress in predicting the PCE of OPV
materials.14 For example, Nagasawa et al.15 used a random forest
classication model to achieve a four-class prediction of the
optoelectronic conversion efficiency of OPV materials through
molecular ngerprints and molecular orbital energy levels.
Jørgensen et al.16 accurately predicted the LUMO energy levels
and optical band gaps of molecules using machine learning
regression models. Sun et al.17 processed a complex database
containing various organic photovoltaic donor materials using
a random forest algorithm and found that molecular ngerprints
with lengths exceeding 1000 bits were the best input. Sahu et al.18

used micro-properties obtained from Density Functional Theory
(DFT) calculations as inputs to predict the PCE of OPV materials,
achieving a correlation coefficient of up to 0.79.Machine learning
has emerged as a powerful tool for accelerating materials
discovery by establishing predictive models between material
properties and their structures. However, its widespread adop-
tion in materials science oen faces the signicant challenge of
limited experimental data, a prevalent issue that few-shot
learning methods are increasingly addressing by enabling effec-
tive learning from scarce samples.45 Furthermore, deep learning-
based methods have also shown great potential in this eld. Sun
et al.17 used convolutional neural networks (CNNs) and data from
the Harvard Clean Energy Project (CEP) to predict the PCE,
achieving a prediction accuracy of 91.02%, proving that CNNs
can extract features from chemical structure images. Richards
et al.19 proposed an attention-driven Long Short-Term Memory
(LSTM) network that, using text descriptors and data augmen-
tation techniques combined with self-attentionmechanisms, can
effectively predict the optoelectronic conversion efficiency of OPV
materials. Chen et al.20 used a deep learningmodel combining Bi-
LSTM networks, attention mechanisms, and backpropagation
neural networks (BPNNs), encoding organic compound molec-
ular structures with language-like molecular descriptors,21 inno-
vatively applying natural language processing techniques to
molecular descriptor processing and prediction. Huang et al.
utilized a deep learning infrared holographic technique with
a self-attention mechanism to solve the critical problem of high-
delity phase disentanglement, providing in-depth insights into
the characterization of new materials, crystal growth, and
performance changes.46 Among these approaches, graph neural
networks (GNNs) have emerged as a key technology due to their
inherent suitability for molecular graph-structured data. For
instance, Eibeck et al. conducted the rst systematic comparison
between GNNs and traditional ML models, demonstrating that
their simple GNN architecture achieved high-precision PCE
prediction (test set MSE= 0.091) solely based on atomic features,
signicantly outperforming conventional methods like random
forests.47 To further enhance model generalization, Qiu et al.
proposed a collaborative framework integrating pre-trained
GNNs with reinforcement learning, enabling high-throughput
screening of candidate molecules with PCE (predicted value z
21%). They also constructed a large-scale open-source dataset to
advance the eld.48 Furthermore, expansions into crystalline
J. Mater. Chem. A
materials—such as the GNNOpt model developed by Tohoku
University and MIT—validated GNNs' universality in cross-scale
material efficiency prediction, successfully identifying 246 novel
photovoltaic materials with PCE > 32%.49 These advancements
underscore GNNs' pivotal role in accelerating the discovery of
high-performance organic photovoltaic materials.

However, the traditional physics-based methods, such as the
Scharber model, rely on oversimplied linear assumptions,
which fail to capture the non-linear interfacial dynamics, such
as exciton dissociation, dipole alignment, and charge recom-
bination that critically inuence device performance. In addi-
tion, many existing ML-based PCE prediction models focus on
either donor or acceptor molecules in isolation, neglecting the
synergistic interactions between donor–acceptor pairs, which
fundamentally determine device performance.22 Furthermore,
although deep learning methods (e.g., CNNs and GNNs) have
improved the extraction of molecular features from ngerprints
or molecular graphs, they oen struggle to capture long-range
dependencies and complex hierarchical information within
donor–acceptor systems.23 Specically, conventional deep
networks (CNNs and GNNs) tend to focus on local patterns or
single-molecule characteristics without a general approach to
modeling D–A pair synergies.24,25 This study learns the long-
distance dependencies and complex interactions between two
molecules through a series of attention-enhancing residual
blocks, ensuring that D–A synergies are accurately captured.

In this work, we propose a novel Solar Power Conversion
Efficiency Network (SolarPCE-Net) to predict the PCE value of
D–A pairs. This SolarPCE-Net integrates the residual network
extracting deep features and the self-attention mechanism to
model the intricate relationships within D–A pairs. By focusing
on the coupled characteristics of D–A systems, the SolarPCE-Net
aims to bridge the existing gap between molecular-level
descriptors and device-level performance. We construct
a comprehensive dataset of donor–acceptor pairs from publicly
available OPV material databases26 and scientic literature
databases,27 enriched with molecular structures, energy levels,
and optical properties. These extracted molecular descriptors
are used as input for the proposed SolarPCE-Net. Extensive
experiments and cross-validation show that the SolarPCE-Net
outperforms several baseline models in terms of prediction
accuracy and generalization capability. By interpretability
analysis, the key molecular descriptors affecting PCE have been
revealed, guiding material optimization. In addition, we also
apply the proposed SolarPCE-Net to screen donor–acceptor
pairs with higher PCE from unexplored D–A combinations,
which accelerate the rapid screening of efficient OPV materials
and advance solar cell technology. This work offers several
important contributions: (1) a novel framework tailored for
donor–acceptor pair modeling in OPV materials, addressing the
material-level coupling effect oen overlooked in the prior
method. (2) A predictive model capable of facilitating rapid
screening and design of high-performance OPV material pairs,
thereby accelerating solar cell development. (3) Insights into
critical factors (molecular descriptors) inuencing PCE through
interpretability analysis enabled by the self-attention
mechanism.
This journal is © The Royal Society of Chemistry 2025
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2. Methods

To accelerate the screening of OPV materials, we have
proposed the SolarPCE-Net to predict the PCE of D–A pairs. As
shown in Fig. 1, our method contained four stages: (1) data
collection and preprocessing, (2) feature extraction, (3) model
training and PCE prediction and (4) result analysis. In the data
collection and preprocessing stage, we used the HOPV15
dataset, which contains a rich set of donor–acceptor molecular
pairs and their performance metrics. In the feature extraction
stage, we applied two different encoding strategies: the MolSig
program28 was used to generate molecular signature descrip-
tors for donor molecules, while one-hot encoding was used to
represent acceptor molecules. In the model training and PCE
prediction stage, we used the deep learning architecture,
which combines the deep feature extraction capability of
residual networks and the advantage of a self-attention
mechanism to capture long-range dependencies. In the
result analysis stage, we performed an interpretable analysis of
the key molecular descriptors by using a SHAP (SHapley
Additive exPlanations) value.29
2.1. Data collection

In this study, we used the Harvard Organic Photovoltaics dataset
(HOPV15) as the benchmark data.29 HOPV15 comprises detailed
information on 350 small-molecule and polymer electron
donors, along with their corresponding 6 acceptor materials
Fig. 1 Workflow of the SolarPCE-Net framework to predict the PCE of
extraction. (c) Model training and PCE prediction. (d) Result analysis.

This journal is © The Royal Society of Chemistry 2025
(PC61BM, PC71BM, TiO2, C60, PDI, and ICB), making it one of
the most comprehensive and diverse datasets available for
organic photovoltaic performance analysis.30 A distinctive feature
of HOPV15 is that it includes both experimental measurements
extracted from the literature and theoretical predictions based
on quantum chemical calculations and the Scharber model. The
dataset reports key photovoltaic performance metrics, including
open-circuit voltage (VOC), short-circuit current density (JSC), and
power conversion efficiency (PCE), all estimated using the
Scharber model.31 Additionally, the highest occupied molecular
orbital (HOMO), lowest unoccupied molecular orbital (LUMO),
and the HOMO–LUMO gap of the donor materials were calcu-
lated using the B3LYP functional32,33 with the def2-SVP basis
set.34 Although B3LYP tends to overestimate electron delocal-
ization, it has been shown to reasonably reproduce HOMO–
LUMO energy gaps in conjugated systems. Moreover, the asso-
ciated computational errors are systematic, allowing for reliable
trend analysis based on relative values.35 To ensure consistency
with previous studies, calibration using experimental data
further mitigates the inuence of specic functional choices. By
relying on a unied computational protocol, HOPV15 ensures
internal consistency and avoids uncertainties that oen arise
from variations in experimental conditions.
2.2. Data preprocessing

To ensure the generalization performance of the models, the
dataset underwent meticulous preprocessing and validation.
D–A pairs in OPVs. (a) Data collection and preprocessing. (b) Feature

J. Mater. Chem. A
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Initially, data cleansing involved removing three donor entries
lacking acceptor information and three duplicates, resulting
in a rened dataset of 344 unique donor–acceptor (D–A) pairs.
Each pair comprised a complete molecular structure, experi-
mentally determined power conversion efficiency (PCE), and
quantum chemical electronic features. An analysis conrmed
that the key performance indicators exhibited an approxi-
mately normal distribution, which is benecial for predictive
modeling.36 For robust model training and evaluation, the
dataset was strategically split. The k-means clustering algo-
rithm was employed to divide the data into an 80% training
set and a 20% test set. The k-means clustering was performed
with n_clusters = 5, initialization method “k-means++”,
maximum iterations of 200, and random_state = 42 to ensure
reproducibility. This clustering-based partitioning is critical
for QSPR models, ensuring the test set resides within the
model's applicability domain and maintaining a representa-
tive data. In each iteration, one fold served as the validation
set, with the remaining nine forming the training set. This
process was repeated 5 times, ensuring each fold was vali-
dated precisely once. The reported performance metrics
represent the average and standard deviation across these 5
folds, providing a more robust assessment of the model's
generalization capabilities than a single train-test split. While
random partitioning was utilized, the inherent complexity and
correlations within molecular datasets are acknowledged.
Future work will explore advanced splitting methodologies,
such as scaffold-based splitting, to further enhance the rigor
of dataset partitioning.
2.3. Molecular precoding

As shown in Fig. 1(a), for the encoding of acceptor molecules,
we used a simple but effective 1-hot encoding scheme. This
captures the essential differences between the receptors, most
relevantly the receptor LUMO energy. The presence of a partic-
ular acceptor was denoted as 1 in its corresponding position,
while all other positions were set to 0. This streamlined
encoding approach effectively captured the fundamental
differences between acceptor molecules, with particular
emphasis on LUMO energy level variations that critically inu-
ence device performance. This precoding method combines
computational simplicity with the ability to represent essential
molecular characteristics relevant to photovoltaic applications.
For the donor molecular characterization, as shown in Fig. 1(b),
we employed the MolSig program to generate signature
descriptors by analyzing atomic connectivity patterns with path
lengths of 0–4 bonds.37 The program evaluated each atom's
local chemical environment and bonding patterns, creating
tree-like subgraphs that encode structural characteristics. Aer
sorting and ltering descriptors based on statistical signi-
cance (removing those with fewer than two occurrences), we
established a comprehensive feature pool of 695 descriptors
that effectively capture the structural and electronic properties
of our donor–acceptor materials. This approach ensured both
computational efficiency and chemical interpretability essential
for materials screening.
J. Mater. Chem. A
2.4. Feature extraction

In this study, we used molecular descriptors to characterize the
structural and physicochemical properties of both donor and
acceptor materials. Given that an excessive number of descrip-
tors can introduce noise, reduce model robustness, and lead to
overtting, we adopted a systematic feature selection strategy to
identify the most relevant descriptors for predicting PCE. Ulti-
mately, 625 molecular descriptors related to donor materials
were selected, effectively capturing key molecular features
inuencing PCE while reducing the dimensionality of the
feature space. This selection strategy not only improved
computational efficiency but also enhanced model interpret-
ability, which are critical for accurately predicting the perfor-
mance of novel OPV materials.
2.5. Model training and PCE prediction

In this study, the SolarPCE-Net introduced a residual network
and the attention mechanism. As shown in Fig. 2, the deep
feature extraction capabilities of residual networks, combined
with the long-range dependency captured advantages of self-
attention mechanisms, offering a novel approach to predict-
ing materials performance.

2.5.1. The residual-attention network in the SolarPCE-Net.
The core architecture of SolarPCE-Net (le side of Fig. 2) is
based on the innovation of “efficient feature mapping” and
consists of three main components: an input projection layer,
a series of attention-enhanced residual blocks, and an output
projection layer. The input projection layer maps 631-dimen-
sional original features (625 donor molecular descriptors + 6
acceptor unique heat codes) into the potential space and
completes the nonlinear transformation through layer
normalization and ReLU activation; the intermediate layer
consists of a series of attention-enhancing residual blocks,
which achieve the deep mining of the features through layer-by-
layer transfer; and the output projection layer completes the
nal structure–performance relationship mapping.

Compared with traditional networks, the core innovation
lies in the synergistic design of the attention mechanism and
residual structure: the attention module dynamically
strengthens the key donor–acceptor interaction features, while
the residual connection solves the gradient vanishing problem
in the deep network through the “feature retention + incre-
mental learning” mode, which enables the model to maintain
accuracy and stability when dealing with high-dimensional
molecular data.

2.5.2. Multiscale residual learning: stable and efficient
molecular feature modeling. This residual learning module is
the core component of SolarPCE-Net, which adopts the
“normalize-rst” design principle, a strategy that signicantly
improves the training stability of the deep network. Each
residual block contains two main transformation paths: the
main path is responsible for feature transformation, while the
jump connection realizes the direct transfer of features. As
shown in the middle panel of Fig. 2, the main path consists of
two layers of Linear Transform, Batch Normalization and
Dropout, which can gradually extract and fuse the local and
This journal is © The Royal Society of Chemistry 2025
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Fig. 2 (left) The residual-attention network architecture in the SolarPCE-Net. (middle) The internal structure of each residual block. (right) The
architecture of the self-attention mechanism for fusion.
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global information of the molecular structure. The introduction
of residual connections can be formally represented as:

hn+1 = h1 + F(hn,W1)
(1)

where F(hn) represents the residual transformation function.
Specically, this function is implemented by two linear trans-
formations and batch normalization:

F(h1)
= W2 × ReLU(BN(W1×h1)

) (2)

The batch normalization operation adopts the standard
form:

BNðxÞ ¼ gðx� mBÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsB2 þ 3Þ
p

þ b (3)

where g and b are learnable tuning parameters. This design is
particularly well-suited for processing molecular descriptors.
The rst linear transformation captures local structural
features, primarily reecting the donor molecule's chemical
environment. The second linear transformation integrates
these features, fusing interaction information between the
donor and acceptor. Meanwhile, the residual linkage preserves
the original feature information, preventing the loss of crucial
molecular structural details in deep networks.

2.5.3. The self-attention mechanism: long-range depen-
dency capture and feature fusion optimization. To enhance the
model's ability to capture long-range dependencies between
features, the SolarPCE-Net integrates an improved version of
the self-attention mechanism in each residual block, as shown
on the right in Fig. 2. The innovation of this mechanism is the
dimensionality reduction strategy, which reduces the dimen-
sionality of the molecular substructure queries (e.g., conjugated
systems C, oxygen-containing groups C) and structural pattern
keys (e.g., ring systems C, electron-rich regions C) to one-fourth
of the original dimensionality. In addition, this self-attention
mechanism maintains the original dimensionality of the
complete molecular feature vectors including electronic
This journal is © The Royal Society of Chemistry 2025
properties, structural features, and chemical environment
information. This design ensures the computational efficiency
and maintains the integrity of the feature information. The
attention computation is formulated as:

AttentionðQ;K;VÞ ¼ g� softmax

�
QKTffiffiffiffiffi

dk
p

�
� V þ X (4)

where g is a learnable scaling parameter, dk is the reduced
dimension, and X represents the residual connection. To
prevent overtting, we apply dropout regularization aer the
attention weights. This mechanism enables the model to
adaptively focus on relevant molecular substructures and
chemical patterns, demonstrating particular advantages in
handling long-range interactions within molecular structures.
The attention weight matrix also provides intuitive interpreta-
tions of molecular feature importance, facilitating the under-
standing of how different structural elements contribute to PCE
prediction.
2.6. Assessment indicators

As shown in Fig. 1(d), to comprehensively assess the prediction
performance of SolarPCE-Net, we use three assessment metrics
including the coefficient of determination (R2), the mean
absolute error (MAE), and the standard error (SE), as follows:

R2 ¼ 1�
Pn
i¼1

ðyi � xiÞ2

Pn
i¼1

ðy� xiÞ2
(5)

MAE ¼ 1

n

Xn

i¼1

jyi � xij (6)

SE ¼ SD
� ffiffiffi

n
p

(7)

where xi represents the experimental PCE from the literature, yi
represents the machine learning prediction results, �y represents
J. Mater. Chem. A
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the average of the predicted values, and SD is the overall stan-
dard deviation of PCE values. These metrics assessed the
prediction accuracy and reliability of the model from different
perspectives.
2.7. Model interpretation: characteristic contribution
analysis based on SHAP values

As shown in Fig. 1(d), to further understand the prediction
process and decision-making mechanism of SolarPCE-Net, we
adopted SHAP values38 to perform model interpretation. The
SHAP values derived from game theory38 are an important tool
for measuring the contribution of individual features to the
prediction and are particularly suitable for the interpretation of
machine learning models.39 The SHAP value helps us under-
stand the decision-making process of the model by quantifying
the contribution of each feature to the prediction result.
Assuming that the ith sample is mi and the jth feature of the ith
sample ismij, the predicted value ni for the ith samplemi can be
expressed as the baseline value nbase plus the sum of the SHAP
values of all the features with the following formula:

ni ¼ nbase þ
Xk

j¼1

f
�
mij

�
(8)

where f(mij) denotes the SHAP value of sample mij, that is, the
contribution of the jth feature of the ith sample to the nal
predicted value ni. For f(mij) > 0, the feature had a positive effect
on the predicted value; conversely, f(mij) < 0 indicates a negative
effect of the feature on the predicted value. The SHAP values
provide a fair assessment of each feature's contribution to the
predicted outcome, while attention weights help the model
focus on the most relevant information by emphasizing
important input contents. This combination can better explain
the distribution of attention weights and provide a more
comprehensive view of each feature's contribution. Combining
Shapley values and attention weights can provide more infor-
mation for the model analysis, helping researchers to identify
potential model biases and overtting, which optimize the
model structure and training process.
Table 1 Comparison of different methods on the HOPV15 dataset

Method

Train Test

R2 MAE SE R2 MAE SE

BRANNLP 0.72 0.27 0.50 0.78 0.46 0.48
MLP 0.99 0.03 0.06 0.66 0.39 0.59
RF 0.93 0.18 0.29 0.76 0.37 0.51
GBR 0.92 0.23 0.30 0.71 0.39 0.54
LR 0.96 0.10 0.22 −1.76 0.99 1.72
MPNN 0.97 0.14 0.16 0.70 0.38 0.55
AttentiveFP 0.98 0.10 0.14 0.67 0.37 0.59
DMPNN 0.98 0.12 0.14 0.77 0.34 0.50
GAT 0.84 0.28 0.42 0.60 0.42 0.64
SolarPCE-Net 0.90 0.24 0.35 0.81 0.35 0.45
3. Results and discussion
3.1. Model hyperparameter conguration

In this study, we developed a residual neural network with the
self-attention mechanism to predict PCE in OPVs. Multiple sets
of experiments were conducted on the dimensionality of the
hidden layers and the number of residual blocks in the archi-
tecture, and we found a combination of hyperparameters that
performed consistently and predicted better, culminating in the
use of 631-dimensional molecular descriptors as inputs, which
were linearly projected into a 59-dimensional hidden space.
Three consecutive residual blocks performed feature learning,
each including a bilinear layer (maintaining 59D hidden
dimensions), batch normalization, ReLU activation, and a self-
attentionmodule for capturing remote feature dependencies. In
the attention mechanism, queries and keys were compressed to
15 dimensions (1/4 of the original dimension) while preserving
J. Mater. Chem. A
full dimensionality (59D) for values. A learnable scaling
parameter g (initialized to zero) adaptively regulated the
attention contribution. For the model training, we utilized an
8 : 2 split (276 training samples vs. 68 test samples), empirically
optimized for the dataset's high-dimensional sparsity (90.49%
sparse features). The Adam optimizer was employed with an
initial learning rate of 1 × 10−3 and batch size of 32 to balance
gradient stability and computational efficiency. Training span-
ned 100 epochs using mean squared error (MSE) as the loss
function. Batch normalization parameters (momentum = 0.9;
epsilon = 1 × 10−5) were congured to mitigate internal co-
variate shi and accelerate convergence.

To address overtting risks in the limited dataset size,
multiple regularization strategies were integrated: batch
normalization in residual blocks, skip connections for gradient
propagation, attention dimension compression, and progres-
sive attention modulation via the learnable g parameter. The
entire framework was implemented using PyTorch, with xed
random seeds to ensure reproducibility. All experiments were
conducted on a NVIDIA GeForce RTX 3060 laptop GPU. The
dataset was divided into a training set and a test set, with 80% of
the training set and 20% of the test set. Each experiment was
repeated independently 100 times to produce average results.
3.2. Comparisons

3.2.1. Comparative performance analysis. To validate the
superiority of SolarPCE-Net, we conducted comprehensive
comparative experiments with established machine learning
methods including traditional regression models (Linear
Regression, LR), ensemble methods (Random Forest, RF;
Gradient Boosting Regression, GBR), articial neural networks
(Bayesian Regularized Articial Neural Networks with Laplace
prior, BRANNLP; Multi-Layer Perceptron, MLP), and state-of-
the-art graph neural networks (MPNN, AttentiveFP, DMPNN,
and GAT). As demonstrated in Table 1, the SolarPCE-Net ach-
ieved superior test performance with R2= 0.81, MAE= 0.35, and
SE = 0.45, establishing it as the most accurate method among
all evaluated models. The scatter plot analysis in Fig. 3 reveals
that the SolarPCE-Net exhibits the tightest clustering around
the diagonal line, indicating high prediction accuracy with
minimal scatter, which corresponds to its lowest test error
This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Scatter plots of test set predictions for different methods on the HOPV15 dataset. (a) BRANNLP. (b) MLP. (c) RF. (d) GBR. (e) LR. (f) MPNN.
(g) AttentiveFP. (h) DMPNN. (i) GAT. (j) SolarPCE-Net.
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metrics. Among traditional and ensemble methods, BRANNLP
demonstrated the strongest performance with test R2 = 0.78,
although with higher error rates (MAE = 0.46). Random Forest
achieved competitive results (R2= 0.76; MAE= 0.37), while GBR
reached R2 = 0.71 with MAE = 0.39. The scatter plots in Fig. 3
show these methods have greater prediction variance compared
to the SolarPCE-Net. Several deep learning models exhibited
severe overtting patterns clearly visible in both the tabulated
results and scatter plot distributions. MLP achieved near-
perfect training performance (R2 = 0.99; MAE = 0.03) but
suffered dramatic generalization failure (test R2 = 0.66; MAE =

0.39). Fig. 3 illustrates this overtting through the wide scatter
of MLP predictions around the ideal prediction line. Similarly,
AttentiveFP and MPNN showed excellent training metrics (R2 =

0.98 and 0.97) but limited test performance (R2= 0.67 and 0.70),
with their scatter plots revealing inconsistent prediction
patterns. Linear regression completely failed with negative test
R2 = −1.76 and extremely high errors (MAE = 0.99), as evi-
denced by the highly scattered and poorly correlated predic-
tions in Fig. 3. Graph neural networks generally
underperformed expectations, with DMPNN achieving the best
among them (R2 = 0.77; MAE = 0.34), while GAT showed the
Fig. 4 Scatter plots of test set predictions for different methods on the

This journal is © The Royal Society of Chemistry 2025
poorest performance (R2 = 0.60; MAE = 0.42). The corre-
sponding scatter plots reveal varying degrees of prediction
inconsistency across these graph-based methods.

The SolarPCE-Net demonstrates optimal balance between
training performance and test generalization, avoiding the
overtting issues that plague other deep learning approaches.
The tight correlation observed in its scatter plot, combined with
the lowest test MAE and SE values, conrms its superior
predictive reliability and establishes the SolarPCE-Net as the
most suitable method for PCE prediction in organic photovol-
taic materials.

Based on the results of 5-fold cross-validation using the full
dataset descriptors, the SolarPCE-Net exhibited superior perfor-
mance compared to other established machine learning and
deep learning methods. As summarized in Fig. 4, the SolarPCE-
Net achieved the highest average R2 score on the test set
(0.6218 ± 0.1404) along with the lowest mean absolute error
(MAE, 0.4362± 0.0772) and standard error (SE, 0.6480± 0.1867),
indicating robust predictive accuracy and generalization capa-
bility. In contrast, traditional linear regression (LR) completely
failed to model the task, yielding a strongly negative test R2

(−331 358 ± 367 424) and abnormally high error values (MAE =
HOPV15 dataset.

J. Mater. Chem. A
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14 812 ± 14 046; SE= 46 007 ± 41 344), clearly demonstrating its
inadequacy for complex molecular descriptor relationships.
Among ensemble methods, random forest (RF) and gradient
boosting regression (GBR) displayed stable performance, with
test R2 values of 0.5564 ± 0.0831 and 0.5031 ± 0.1092, respec-
tively; however, their predictive accuracy still lagged behind that
of the SolarPCE-Net. MLP achieved near-perfect results on
training data (R2= 0.9975± 0.0004), but performed poorly on the
test set (R2= 0.4342± 0.1689), reecting pronounced overtting.
Other advanced graph neural network architectures, including
MPNN (test R2= 0.5433± 0.0845), AttentiveFP (0.5487± 0.1525),
DMPNN (0.5573 ± 0.0831), and GAT (0.5585 ± 0.1029), achieved
only moderate performance.

Overall, these comparative results conrm that the
SolarPCE-Net delivers not only leading predictive accuracy but
also enhanced generalization in the context of PCE prediction
based on comprehensive molecular descriptors, substantially
outperforming both classical machine learning models and
other state-of-the-art deep learning approaches.

3.2.2. Uncertainty quantication and model reliability
assessment. To rigorously evaluate the reliability of SolarPCE-
Net, we conducted a comprehensive uncertainty quantication
(UQ) analysis on the HOPV15 dataset, considering the distri-
bution of predictive uncertainties, the correlation between
absolute error and uncertainty, calibration performance, and
representative case studies of high uncertainty predictions.
Together, these results provide a holistic view of the model's
ability to deliver both accurate and trustworthy predictions. As
shown in Fig. 5, the distribution of predictive uncertainties
reects model stability across chemically diverse donor–
acceptor systems. The SolarPCE-Net exhibits a narrow and low
variance uncertainty distribution compared with deep learning
baselines such as MLP, BRANNLP, MPNN, and AttentiveFP,
indicating stable predictive condence and reduced occurrence
of extreme outliers. Although ensemble models like RF and GBR
also display relatively compact distributions, the SolarPCE-Net
achieves the dual advantage of narrower dispersion and higher
predictive accuracy, suggesting that its condence estimates are
more informative for practical screening.
Fig. 5 Comparative analysis of prediction uncertainty distributions acros
(d) GBR. (e) LR. (f) MPNN. (g) AttentiveFP. (h) DMPNN. (i) GAT. (j) SolarPC

J. Mater. Chem. A
The correlation between absolute prediction error and the
corresponding uncertainty estimate provides a quantitative
measure of how effectively uncertainty captures predictive reli-
ability. As shown in Fig. 6, the SolarPCE-Net achieved a Pearson
correlation coefficient of R = 0.418, exceeding most deep
learning benchmarks such as MLP (R = 0.405), BRANNLP (R =

0.377), and MPNN (R = 0.295), but lower than some graph
neural network variants including GAT (R = 0.455), DMPNN (R
= 0.495), and AttentiveFP (R = 0.464), as well as the ensemble
based random forest (R = 0.614). Gradient boosted regression
(GBR) exhibited a weaker correlation (R = 0.326), while the
linear regression baseline performed very poorly (R = −0.088),
indicating its inability to establish a meaningful uncertainty–
error relationship. Although SolarPCE-Net's Pearson R is
moderate compared to certain ensemble models, this outcome
reects an intrinsic tradeoff between predictive accuracy and
uncertainty–error coupling. Ensemble approaches such as RF
oen yield higher correlations because their predictive vari-
ance—largely driven by bootstrap sampling diversity—directly
encodes epistemic uncertainty that scales with prediction
difficulty. However, such models typically suffer from lower
mean predictive accuracy and broader uncertainty ranges,
leading to less precise condence intervals. By contrast, Solar-
PCE-Net's self-attention enhanced residual architecture
produces a more deterministic and smooth mapping from
molecular descriptors to PCE, thereby reducing both the
magnitude and variance of prediction errors. This “error
compression” effect narrows the dynamic range of errors and
uncertainties, which can attenuate the statistical correlation
between them. From an applied perspective, this tradeoff is not
detrimental. SolarPCE-Net's moderate correlation value still
ensures that higher uncertainty predictions tend to coincide
with larger errors while offering superior calibration and accu-
racy. The resulting balance between informative uncertainty
estimates and predictive stability makes the SolarPCE-Net well-
suited for risk-aware decision-making in high-throughput OPV
material screening.

Calibration plots depict the agreement between predicted
condence and empirical accuracy, with the diagonal
s various models on the HOPV15 dataset. (a) BRANNLP. (b) MLP. (c) RF.
E-Net.

This journal is © The Royal Society of Chemistry 2025
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Fig. 6 Correlation between prediction errors and uncertainty estimates for various models on the HOPV15 dataset. (a) BRANNLP. (b) MLP. (c) RF.
(d) GBR. (e) LR. (f) MPNN. (g) AttentiveFP. (h) DMPNN. (i) GAT. (j) SolarPCE-Net.

Fig. 7 Calibration plots of uncertainty estimates across various models on the HOPV15 dataset.
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representing the ideal perfectly calibrated model. Curves to the
le of the diagonal indicate under condence, while curves to
the right indicate overcondence. As shown in Fig. 7, RF,
MPNN, DMPNN, and GAT produce curves closest to the ideal
line, crossing from the le to the right, suggesting balanced
condence behavior over the probability spectrum. SolarPCE-
Net's curve lies on the right of the diagonal, exhibiting a mild
tendency toward overcondence; however, it remains closer to
the ideal thanMLP, GBR, LR, BRANNLP, and AttentiveFP, which
deviate more substantially. This positioning indicates that
SolarPCE-Net's uncertainty estimates, while slightly over-
condent, are relatively well aligned with empirical accuracy,
offering reliable condence information for practical decision-
making.

Representative samples with the highest uncertainty values
further illustrate the practical utility of UQ, as shown in Table 2.
This journal is © The Royal Society of Chemistry 2025
High uncertainty predictions consistently correspond to broad
95% condence intervals, reecting reduced model condence.
For instance, sample 57 (true value= 3.2721) was predicted with
a mean of 2.8765 and an uncertainty of 1.0170, resulting in
a wide condence interval ([0.8832, 4.8698]) that fully covered
the ground truth. Similarly, sample 231 exhibited both high
uncertainty (0.9529) and a relatively large error (1.1409),
correctly signaling low reliability. Interestingly, not all high
uncertainty cases correspond to poor predictions: sample 129
had a very small error (0.0989), yet was assigned high uncer-
tainty (0.9632), reecting the model's conservative recognition
of regions in chemical space with limited training coverage.
These examples show that SolarPCE-Net's uncertainty estimates
act as meaningful indicators of prediction risk, either by ag-
ging potentially erroneous predictions or by conservatively
cautioning against overreliance when data support is limited.
J. Mater. Chem. A
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Table 2 Examples with highest uncertainty on the HOPV15 dataset

True value Predicted mean Uncertainty (std dev.) 95% CI Absolute error

Sample 57 3.2721 2.8765 1.0170 [0.8832, 4.8698] 0.3956
Sample 247 1.5025 2.0674 1.0021 [0.1034, 4.0315] 0.5650
Sample 129 2.5847 2.6836 0.9632 [0.7957, 4.5715] 0.0989
Sample 231 4.1499 3.0091 0.9529 [1.1415, 4.8767] 1.1409
Sample 17 2.7344 2.7194 0.9101 [0.9356, 4.5031] 0.0150
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Overall, the integrated UQ analysis highlights three key
characteristics of SolarPCE-Net: it produces stable and compact
uncertainty distributions that minimize extreme uctuations in
predictive condence; it achieves moderate but informative
error–uncertainty correlation, ensuring unreliable predictions
are effectively agged while maintaining high overall accuracy;
and it delivers competitively calibrated outputs with only mild
overcondence, outperforming the majority of baselines. At the
case level, high uncertainty predictions consistently correspond
either to large errors or to unfamiliar chemical regions,
providing valuable interpretability. Taken together, these nd-
ings establish the SolarPCE-Net as a model that not only ach-
ieves high predictive accuracy but also provides practically
trustworthy uncertainty estimates. This balance of accuracy,
stability, and reliable condence makes the SolarPCE-Net
particularly suitable for high-throughput virtual screening and
guided experimental validation in the discovery of high
performance organic photovoltaic materials.
3.3. Ablation study of SolarPCE-Net architecture on the
HOPV15 dataset

3.3.1. Impact of architectural components on SolarPCE-
Net performance. To systematically assess the individual
contributions of key architectural components to SolarPCE-
Net's performance, a comprehensive ablation study was con-
ducted. This analysis helps to identify which elements are
critical for achieving the reported superior performance and
provides insights into the model's design rationale. The abla-
tion experiments were performed on the full HOPV15 dataset
(D–A pairs), with the result metrics presented in Table 3.

3.3.1.1 Self-attention mechanism analysis. Removing the self-
attention modules, which were replaced with standard feed-
forward layers, resulted in a signicant decrease in perfor-
mance. The test R2 fell from 0.81 to 0.54, with MAE increasing
Table 3 Ablation study of architectural components in SolarPCE-Net
performance

Train Test

R2 MAE SE R2 MAE SE

SolarPCE-Net 0.90 0.24 0.35 0.81 0.35 0.45
w/o Self-attention 0.93 0.21 0.28 0.54 0.52 0.70
w/o Residual connections −1.51 1.37 1.72 −2.07 1.52 1.81
w/o Full dim in attention 0.93 0.21 0.29 0.50 0.50 0.73

J. Mater. Chem. A
from 0.35 to 0.52. This highlights the essential role of self-
attention in capturing long-range dependencies and effectively
weighting molecular substructures and chemical patterns,
crucial for modeling donor–acceptor interactions.

3.3.1.2 Residual connection analysis. Without residual
connections, the network exhibited a sharp performance drop,
with a test R2 of −2.07 and an MAE of 1.52. These connections
are vital for enabling stable gradient propagation through deep
layers, which ensures robust training and generalization,
especially for molecular data characterized by high dimen-
sionality and limited size.

3.3.1.3 Attention dimension analysis. The SolarPCE-Net
employs a strategic dimensionality reduction approach, com-
pressing queries and keys to one-fourth of the original dimen-
sion while preserving full dimensionality for values. This design
achieved a test R2 of 0.81, signicantly outperforming the full-
dimension variant which only reached 0.50. The selective
reduction strategy effectively balances computational efficiency
with information preservation, demonstrating that complete
molecular information in value vectors is essential for accurate
PCE prediction.

3.3.2. Ablation study of encoding schemes in the SolarPCE-
Net. To address concerns regarding the asymmetric encoding
scheme of 625 MolSig descriptors for donors versus 6 one-hot
features for acceptors, we explored various feature representa-
tion combinations. The specic test metric results are shown in
Table 4.

3.3.2.1 Minimal symmetric encoding (6 + 6). Utilizing only 6
features for donors and acceptors led to poor generalization,
with a test R2 of 0.30, despite achieving a training R2 of 0.95.
This underscored severe undertting given the complex donor–
acceptor relationships in OPV materials.

3.3.2.2 High-dimensional symmetric encoding (625 + 625).
While this symmetric approach achieved excellent training
results with an R2 of 0.99, it was prone to overtting, yielding
Table 4 Ablation study of encoding schemes in the SolarPCE-Net

Encoding scheme
(donor + acceptors)

Train Test

R2 MAE R2 MAE R2 MAE

6 + 625 0.90 0.24 0.35 0.81 0.35 0.45
6 + 6 0.95 0.18 0.24 0.30 0.62 0.87
625 + 625 0.99 0.09 0.11 0.63 0.39 0.63
625 0.91 0.23 0.33 0.79 0.38 0.48

This journal is © The Royal Society of Chemistry 2025
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a test R2 of 0.63. The limited diversity of acceptors could not
justify such high-dimensional representations.

3.3.2.3 Donor-only encoding (625). Using donor descriptors
alone, the model performed competitively with a test R2 of 0.79,
suggesting that donor characteristics predominantly inuence
PCE in the dataset. This aligns with the notion that simplied
acceptor representations should suffice due to their standard-
ized properties.

3.3.2.4 Chemical justication for asymmetric encoding. The
choice of asymmetric encoding reects the chemical reality of
OPV systems, with standardized acceptors primarily distin-
guished by their LUMO levels, while donors require detailed
descriptors given their structural diversity.

These results indicate that domain knowledge should guide
feature encoding design. The asymmetric encoding used in the
SolarPCE-Net not only improves predictive performance but
also ensures chemical interpretability, providing a principled
basis for future modeling strategies in materials science.
Table 5 Comparison of different methods based on donor molecular
descriptors in the HOPV15 dataset

Method

Train Test

R2 MAE SE R2 MAE SE

BRANNLP 0.89 0.24 0.35 0.72 0.41 0.54
MLP 0.99 0.03 0.06 0.66 0.39 0.60
RF 0.92 0.19 0.30 0.76 0.36 0.51
GBR 0.93 0.22 0.29 0.75 0.36 0.51
LR 0.92 0.18 0.30 −2.24 4417 1547
MPNN 0.97 0.10 0.19 0.72 0.34 0.54
AttentiveFP 0.97 0.12 0.16 0.61 0.40 0.62
DMPNN 0.74 0.37 0.52 0.34 0.66 0.99
GAT 0.78 0.30 0.49 0.43 0.43 0.77
SolarPCE-Net 0.91 0.23 0.33 0.79 0.38 0.48

Fig. 8 Scatter plots of test set predictions for different methods based on
MLP. (c) RF. (d) GBR. (e) LR. (f) MPNN. (g) AttentiveFP. (h) DMPNN. (i) GA

This journal is © The Royal Society of Chemistry 2025
3.4. SolarPCE-Net performance analysis based on donor
molecular descriptors

The original dataset contains donor–acceptor molecular
descriptors. Through the preliminary experimental validation,
the proposed model shows good performance in handling these
descriptors, outperforming other methods. To further explore
the PCE prediction performance of our SolarPCE-Net using
donor molecular data, we conducted experiments using donor
molecular descriptors alone as a new dataset, with results
shown in Table 5 and Fig. 8. The experimental results demon-
strate that the SolarPCE-Net achieved the highest R2 value (0.79)
on the test set while maintaining the lowest error metrics,
including MAE (0.38) and SE (0.48). This performance validates
the model's superior predictive capability and outstanding
generalization performance when handling complex molecular
descriptor data. In contrast, other methods exhibited certain
limitations. For instance, while Random Forest (RF) and
Gradient Boosting Regression (GBR) achieved R2 values of 0.76
and 0.75, respectively, on the test set, with comparable MAE
(0.36) and SE (0.51), their predictive performance still fell
slightly short of the SolarPCE-Net. Message Passing Neural
Network (MPNN) demonstrated good stability on the test set (R2

= 0.72, MAE= 0.34, and SE= 0.54) but failed to further enhance
prediction accuracy. Furthermore, the Attention Fingerprint
model (AttentiveFP) and Deep Message Passing Neural Network
(DMPNN) performed poorly on the test set, with AttentiveFP
achieving an R2 of only 0.61 and DMPNN an even lower R2 of
0.34. Both results indicate that these methods struggle to
capture the complexity of donor molecular descriptors. Notably,
linear regression (LR) exhibited exceptionally poor test perfor-
mance, with an R2 value of −2.24 and extremely high error
(MAE= 4417 and SE= 1547), indicating its complete inability to
adapt to this complex dataset. In contrast, the Multi-Layer
Perceptron (MLP) performed excellently on the training set
(R2 = 0.99) but showed a signicant decline on the test set (R2 =
donor molecular descriptors in the HOPV15 dataset. (a) BRANNLP. (b)
T. (j) SolarPCE-Net.

J. Mater. Chem. A
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Fig. 9 Performance comparison of methods on donor molecular descriptors in the HOPV15 dataset using 5-fold cross-validation.

Table 6 Representative donor molecular descriptors and their cor-
responding structures

Codes Donor molecular descriptors Donor molecular structure

MD3 [C](][C]([C])[S]([C]))

MD12 [C](][C])[C](][C])

MD45 [C]([C](][C])][C]([C])[S]([C]))

MD54 [C]([C](][C])][C]([C][S]))
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0.66, MAE = 0.39, and SE = 0.60), revealing pronounced over-
tting issues.

To further evaluate the performance of models based on
donor molecular descriptors, we employed ve-fold cross-
validation to comprehensively assess the generalization capa-
bilities of each method and compared the SolarPCE-Net against
other mainstream approaches. As shown in Fig. 9, in the ve-
fold cross-validation based on donor molecular descriptors,
the SolarPCE-Net achieved the highest average R2 value (0.6290
± 0.1128) on the test set, while its MAE (0.4322± 0.0778) and SE
(0.6438 ± 0.1529) remained within the lowest range, demon-
strating superior generalization capability. In contrast, tradi-
tional regression models like linear regression (R2 = −546,435
± 797,448) completely failed, while random forest (R2 = 0.5528
± 0.0879) and gradient boosting regression (R2 = 0.5116 ±

0.1066) delivered stable yet limited prediction accuracy. Among
deep learning approaches, the Multi-Layer Perceptron (MLP)
exhibited poor test performance due to overtting (R2 = 0.3139
± 0.1664). AttentionFP (R2 = 0.5610 ± 0.1482) performed better
but still fell short of the SolarPCE-Net, while graph-based
methods MPNN, DMPNN, and GAT showed generally medi-
ocre performance (R2 = 0.3888 ± 0.2378, 0.4282 ± 0.1721, and
0.3888 ± 0.2378, respectively). Overall, the SolarPCE-Net
demonstrated signicant advantages in handling complex
molecular descriptors and predicting photoelectric conversion
efficiency, outperforming other traditional and deep learning
models.

In summary, our SolarPCE-Net uniquely achieves reliable
PCE prediction using donor-only molecular descriptors, over-
coming the limitations of conventional models, demonstrating
its robustness. Its adaptability in donor-centric modeling stems
from attention-guided feature abstraction and adaptive regula-
rization, which effectively distill critical donor-specic patterns
from high-dimensional sparse data while suppressing
descriptor redundancy.
3.5. Model interpretation analysis for screening donor
molecular descriptors

In this study, we employed a self-attentionmechanism to screen
donor molecular descriptors. To evaluate feature importance,
we utilized both attention weights and SHAP values. The self-
attention mechanism dynamically adjusts feature importance,
J. Mater. Chem. A
thereby enhancing the model's exibility and efficiency in
handling complex data. In Table 6, we present the relationship
between molecular descriptors and their corresponding
molecular structures, where these identied structural features
play a crucial role in understanding molecular properties and
functions. We make new coding names for each donor molec-
ular descriptor in SI 1.

3.5.1. Analysis of attention weights. Through the self-
attention mechanism, we identied the top 20 molecular
descriptors based on their attention weights. As shown in
Fig. 10(a), we illustrate the attention weights of all molecular
descriptor features, including acceptors and donor molecular
descriptors. While Fig. 10(b) specically shows the attention
weights of only donor molecular descriptors. As shown in
Fig. 10, the specic descriptors (MD6, MD53, MD12 and MD3)
exhibit a higher weight value in our model's decision-making
process, indicating their signicant impact on prediction
outcomes. In addition, the analysis of the molecular descriptors
MD3, MD6, MD12, and MD53 reveals their critical roles in
enhancing the performance of OPV materials.

MD3, characterized by a sulfur-containing ve-membered
ring, enhances electron-donating capabilities, which signi-
cantly improves the charge transport efficiency.39 This structural
This journal is © The Royal Society of Chemistry 2025
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Fig. 10 Top-20 molecular descriptors ranked by the attention weights. (a) Overall molecular descriptors. (b) Donor molecular descriptors.

Fig. 11 SHAP value distribution of Top-20 donor molecular descrip-
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feature is essential for achieving device stability and efficiency,
making it a promising component in high-performance OPV
materials. MD6, with its carbon–carbon double bonds and
sulfur atoms, forms an enhanced conjugated system that
facilitates electron delocalization, thereby improving charge
mobility.40 The optimization of this conjugated connection is
crucial for achieving high PCE, highlighting its potential as
a key structural motif in future OPV designs. MD12, a linear
conjugated structure, supports intramolecular electron delo-
calization, which enhances charge transport.41 As a funda-
mental unit in efficient photovoltaic materials, optimizing the
conjugation length and arrangement of MD12 is vital for
maximizing device performance. MD53, featuring a complex
conjugated structure with both oxygen and sulfur, optimizes
energy level alignment and improves charge separation effi-
ciency.42 This combination is critical for high-efficiency energy
conversion, positioning MD53 as a valuable structural element
in the design of next-generation OPV materials. These molec-
ular descriptors collectively underscore the importance of
strategic structural optimization in the development of OPV
materials with superior PCE.43

In summary, this feature selection of our method not only
enhances the model performance but also provides an inter-
pretable insight into the decision-making process. These
molecular descriptors MD6, MD53, MD12 and MD3, as
substructures, play a signicant role in the development of
high-performance OPV materials. Their unique structural
characteristics contribute to improved charge transport, energy
level alignment, and device stability. By strategically incorpo-
rating these substructures, future research can focus on opti-
mizing donor–acceptor interactions and enhancing the overall
photovoltaic efficiency. This approach holds promise for
achieving breakthroughs in organic photovoltaic technology,
potentially leading to more efficient and cost-effective solar
energy solutions.

3.5.2. SHAP value analysis. To further validate the impor-
tance of features identied by the attention mechanism, we
select the top 20 molecular descriptors with the highest atten-
tion weights and compute their SHAP values using RF and GBR
models. As shown in Fig. 11(a and b), the SHAP values of these
This journal is © The Royal Society of Chemistry 2025
selected molecular descriptors across different models quantify
the specic contribution of each feature to the model's output,
complementing the results obtained from attention weights.
For instance, the MD45 and MD54 features with higher atten-
tion weights [Fig. 10(b)] indicate a signicant SHAP value
(Fig. 10). This further demonstrates the interpretability of our
approach and the signicance of the higher molecular
descriptors focused on by the attention mechanism of
SolarPCE-Net for OPV materials.

3.5.3. Comparison of attention weights and SHAP values.
To evaluate the Top-20 features with the highest attention
weights [Fig. 10(b)], we computed the SHAP values and per-
formed feature importance analysis using the GBR and RF
models.

In Fig. 12(a and c), we present the feature importance and
SHAP values of these selected features in the GBR model, while
Fig. 12(b and d) show the corresponding results in the RF
model. In Fig. 12, the key molecular descriptors (MD45, MD12,
and MD3) are prominently highlighted both in the attention
analysis, which pinpoints focus areas in the feature space, and
in the SHAP value evaluation, which quanties their contribu-
tions. By integrating the attention mechanism—which helps
tors in RF and GBR models. (a) GBR. (b) RF.

J. Mater. Chem. A
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Fig. 12 Comparative analysis of feature importance and SHAP values for donor molecular descriptors using GBR and RF models. (a) GBR. (b) RF.
(c) GBR. (d) RF.
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identify areas of the feature space that merit further explora-
tion—with SHAP value analysis, we obtained a more compre-
hensive understanding of the critical molecular descriptors in
OPV materials and support the concept of utilizing attention-
driven feature pre-screening. Moreover, by synergistically
combining the focus-oriented insights from the attention
mechanism with the quantitative explanations derived from
SHAP, we reveal the roles of these critical descriptors. This dual-
validation consensus not only validates the attention mecha-
nism's capability to identify physically meaningful features but
also establishes a robust foundation for descriptor prioritiza-
tion in OPV material design. Crucially, this dual-validation
framework conrms the reliability of attention weights as
a standalone feature pre-screening tool, effectively bridging
data-driven modeling with domain-specic physicochemical
insights.
Table 7 Top six predicted D–A pairs with potential PCE values and OPV

No. Donors

1 Cn1c2ccccc2c2ccc(–c3ccc(–c4nnc(–c5cccs5)c5nonc54)s3)cc21
2 Cn1c2cc(C]C(C#N)C#N)sc2c2sc(C]C(C#N)C#N)cc21
3 N#CC(C#N)]Cc1ccc(–c2ccc(N(c3ccc(–c4ccc(C]Cc5cccs5)s4)c

c3ccc(–c4ccc(C]C(C#N)C#N)s4)cc3)cc2)s1
4 N#CC(C#N)]Cc1ccc(–c2ccc(N(c3ccc(–c4ccc(C]Cc5cccs5)s4)c

c3ccc(–c4ccc(C]C(C#N)C#N)s4)cc3)cc2)s1
5 N#CC(C#N)]Cc1ccc(–c2ccc(N(c3ccc(–c4ccc(C]Cc5cccs5)s4)c

c3ccc(–c4ccc(C]C(C#N)C#N)s4)cc3)cc2)s1
6 N#CC(C#N)]Cc1ccc(–c2ccc(N(c3ccc(–c4ccc(C]Cc5cccs5)s4)c

c3ccc(–c4ccc(C]C(C#N)C#N)s4)cc3)cc2)s1

J. Mater. Chem. A
3.6. Application analysis of screened D–A pairs using the
SolarPCE-Net

To apply our SolarPCE-Net method to the practical screening
task, we randomly combined donor and recipient pairs in the
HOPV15 dataset. The corresponding data are recorded in SI 2. By
leveraging the advanced capabilities of SolarPCE-Net, we applied
the SolarPCE-Net to predict the PCE value of unexplored D–A
combination. All PCE prediction results with randomly combined
D–A pairs are recorded in SI 3. Our method screened numerous
D–A combinations and identied potential D–A pairs that exhibit
high accuracy and high PCE. We applied two screening strategies
to the HOPV15 dataset: (i) the predicted lling efficiency (PCE)
must exceed 4.5 (higher predicted PCE threshold, 75% of the
highest predicted PCE value 5.96) to ensure only high-
performance organic photovoltaic candidate materials are
included; (ii) predicted uncertainty (standard deviation) must not
properties

Acceptors Predicted_PCE Uncertainty_Std

C60 4.670158 0.2972964
ICB 4.639657 0.2777083

c3) PDI 4.627146 0.2776075

c3) TiO2 4.598744 0.2698893

c3) ICB 4.584405 0.2566765

c3) C60 4.544224 0.2635908

This journal is © The Royal Society of Chemistry 2025
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exceed 0.30 to guarantee high prediction condence. Under these
constraints, six donor–acceptor pairs were successfully identied
from the dataset, as shown in Table 7.

The three shortlisted donor molecules share several key
structural motifs that underpin their predicted high perfor-
mance and low uncertainty. All feature an extended p-conju-
gated backbone, frequently incorporating fused aromatic or
heteroaromatic units that enforce molecular planarity and
rigidity, thereby enhancing p–p stacking propensity and facil-
itating efficient charge transport in the solid state. Each donor
exhibits a pronounced donor–acceptor (D–A) push–pull archi-
tecture: electron-rich fragments such as thiophene or polycyclic
aromatic systems serve as donor segments, while strong elec-
tron withdrawing units—such as dicyanovinyl groups, fused
nitrogen containing heterocycles, or diazine moieties—are
positioned at the molecular termini. This conguration
promotes intramolecular charge transfer (ICT), broadens and
redshis absorption spectra, and ne-tunes the frontier orbital
energies to achieve a favorable HOMO/LUMO alignment. The
rigid and coplanar p-frameworks further improve molecular
packing and hole mobility, while terminal acceptor moieties
lower the LUMO levels, providing an energetic driving force for
exciton dissociation. These intrinsic donor properties are
complemented by favorable interactions with multiple classes
of electron acceptors. With planar small molecule acceptors
such as perylene diimide (PDI), the donors' coplanar backbones
enable strong face on p–p stacking, reducing exciton diffusion
lengths before dissociation. Against spherical fullerene deriva-
tives (C60, ICB), the donors' rigid conjugated frameworks
promote intimate interfacial contact and isotropic electronic
coupling, ensuring rapid electron transfer and balanced trans-
port. For inorganic TiO2, the signicant dipole moments arising
from the D–A push–pull design can strengthen interfacial
electric elds, facilitating charge separation and suppressing
recombination. The recurrence of these donor cores in top-
ranked, low-uncertainty predictions across diverse acceptor
chemistries underscores their structural compatibility and
energetic versatility, making them chemically plausible and
experimentally promising candidates for high performance
organic photovoltaic devices.

In summary, these characteristics collectively position the
selected D–A pairs as promising candidates to enhance device
performance. Future work could test these predictions through
laboratory work or high-delity simulations. Our SolarPCE-Net
not only identied high-performance OPV materials but also
provided a strategic framework to accelerate the discovery of
efficient solar energy solutions.

4. Conclusion

In this study, we proposed the SolarPCE-Net, a deep learning-
based framework for predicting the power conversion efficiency
(PCE) of organic photovoltaic (OPV) materials. By combining
residual network architectures with a self-attention mechanism,
the model achieved excellent performance on the HOPV15 data-
set, reaching an R2 of 0.81 on the independent test set—signi-
cantly outperforming existing machine learning methods. Even
This journal is © The Royal Society of Chemistry 2025
when using only donor molecular descriptors, the SolarPCE-Net
maintained an R2 of 0.79, validating the effectiveness of its
architectural design. Five-fold cross-validation yielded an average
R2 of 0.62 with relatively low variance across folds, indicating that
while performance decreases under the more stringent data
partitioning—which better simulates extrapolation to unseen
chemotypes—the model still retains reasonable generalization
capability, given the limited dataset size. The feature processing
strategy integrates molecular signature descriptors generated by
MolSig with quantum chemical calculation features, providing
rich structural and electronic information. This multimodal
fusion not only improves predictive accuracy but also enhances
generalizability. Through SHAP value analysis and attention
weight visualization, we identied key molecular descriptors
inuencing PCE and revealed interpretable structure–property
relationships, enhancing the credibility of predictions. Uncer-
tainty quantication (UQ) analysis conrmed that the model can
effectively separate high-condence from low-condence predic-
tions, enabling reliable prioritization of candidates in high-
throughput virtual screening. Applying a dual-threshold lter
(PCE > X, UQ# Y) to new donor–acceptor pairs yielded a compact
set of synthetically feasible, high-performance candidates across
diverse acceptor classes, demonstrating the method's practical
potential to accelerate OPV material discovery.

Nevertheless, limitations remain: the model does not explic-
itly account for device processing parameters (e.g., lm thick-
ness, solvent, and annealing), relies on a relatively small and
chemically imbalanced dataset compared to the vast OPV
chemical space, and omits morphological descriptors such as
packing, miscibility, or crystallinity that strongly inuence device
performance. Future work will focus on (i) integrating process-
and morphology-related features, (ii) expanding datasets via
high-throughput computation and experimental data sharing,
and (iii) developing multimodal learning architectures to jointly
model molecular, morphological, and processing information.
Overall, the SolarPCE-Net delivers accurate, interpretable,
uncertainty-aware PCE predictions with demonstrated general-
ization ability under cross-validation, highlighting its promise
for guiding rational OPV material design and bridging the gap
between molecular discovery and device optimization.
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Data availability

The source code used to replicate all our analyses, including all
real data, is available at the following link: https://github.com/
Liupei-Luna/pcenet.git.

Supplementary information: SI 1 is the code names of
acceptors and donor molecular descriptors. SI 2 is feature
extraction results of acceptors and donor moleculars. SI 3 is the
predicted PCE results with new D–A pairs. See DOI: https://
doi.org/10.1039/d5ta04854k.
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