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Photovoltaic (PV) technology, particularly silicon solar cells (SSCs), has emerged as a key player in meeting this
demand due to its mature technology, prolonged stability, non-toxicity, and material abundance. Heterojunction
(HJT) solar cells have shown significant promise by eliminating dopant-diffusion processes and separating c-Si
wafers from metal contacts. In recent years, the notable enhancement in the record PCE of SSCs primarily hinges
on advancements in HJT technology, incorporating sophisticated passivating selective contacts. This review
explores the evolution and recent progress of passivating selective contacts in HJT solar cells, examining doped

silicon-based materials, metal compounds, and organic materials. Despite dopant-free contacts still lagging in
efficiency, their potential for high fill factor (FF) values suggests viable pathways for future research. This study
aims to provide a comprehensive overview, highlighting key advancements, challenges, and prospects in the
ongoing development of HJT technology for higher performance, enhanced stability, and reduced costs.

1. Introduction

The need for energy is unequivocal for human sustenance[1]. Given
the anticipated twofold increase in global energy consumption by the
midcentury due to population and economic expansion, conserving
natural resources becomes paramount[2,3]. Photovoltaic (PV) technol-
ogy, which harnesses solar energy, is seen as a key means of meeting the
escalating demand for electricity while reducing the environmental
impact of resource depletion associated with fossil energy technologies
[4]. According to The International Technology Roadmap for Photo-
voltaics (ITRPV), the solar PV market exhibited notable expansion,
reaching a record 502 gigawatt (GW) in shipments in 2023[5]. This
means we are now truly in the terawatt (TW) era of PV. Silicon solar cells
(SSCs) are the predominant PV technology, commanding over 97 % of
the market share[5]. Besides technology’s maturity, prolonged stability,
non-toxicity, and the abundance of materials, this market dominance is
mainly attributed to their continuously increased power conversion ef-
ficiency (PCE) and reduced levelized cost of electricity (LCOE)[6,7].

Presently, industrial SSCs are dominated by the homojunction crys-
talline silicon (c-Si) technology, encompassing aluminum back surface
field (AI-BSF) cells, passivated emitter and rear contact cells (PERC),
tunnel oxide passivated contact cells (TOPCon), heterojunction with
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intrinsic thin layer cells (HJT or HIT), back contact cells (BC), and so on
[8-10]. Thanks to its relatively simple structure, low manufacturing cost
and excellent long-term stability, the Al-BSF technology has played a
pivotal role in the success of the silicon PV industry during the first
fifteen years of the new millennium|[5]. A typical p-type Al-BSF cell
comprises a phosphorus-doped n* emitter and an Al-doped p* BSF,
formed through a firing process following the screen-printing of Al paste
[11]. Nevertheless, the PCE of Al-BSF cells (< 20 %) is primarily con-
strained by the high carrier recombination velocity at the rear surface of
the ¢-Si[12]. To mitigate recombination losses at the rear surface, the
PERC technology incorporates a passivation dielectric layer between the
rear side of c¢-Si and Al contacts[13]. A record-breaking PCE of 25.0 %
was attained on a lab-scale PERC cell in 1999, employing thermally
grown silicon dioxide (SiO3) passivation on both sides[14]. From 2015
onwards, the market has seen a shift with PERC cell technology over-
taking AI-BSF and maintaining its dominance[5]. However, further
improving the PCE of the PERC is constrained by severe carrier recom-
bination losses at the metal-silicon contact regions with an induced
significant loss in device open-circuit voltage (V,c)[15]. In this context, a
promising route on PERC is the Tunnel Oxide Passivated Contact
(TOPCon) solar cells, which replace the local metal contact for electron
collection with a stack of SiOy/doped poly-Si layer, reducing
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recombination current density[16,17]. The merit of this configuration
lies in the efficient extraction of electrons while simultaneously
providing surface passivation[18]. This concept is referred to as
passivating selective contact.

For homojunction SSCs, the need for heavy doping in bulk induces
Auger recombination, bandgap narrowing, and free carrier absorption in
c-Si, limiting the device’s overall performance[19,20]. In this regard,
HJT SSCs are the most promising solution that eliminates the
dopant-diffusion process and entirely separates the c-Si wafer from the
metal contacts[21]. In the HJT structure, passivating selective contacts
are applied on both sides of the c-Si wafer to form a sandwich structure
[22]. Early in 1974, Fuhs and co-workers elucidated the heterojunction
concept, presenting a structure comprising hydrogenated amorphous
silicon (a-Si:H) on c-Si[23]. Later in the 1990s, Sanyo pioneered the
development of the first HIT SSC[24], swiftly attaining a PCE surpassing
21 % by 2005[25]. In a conventional HJT SSC, the dangling bonds on the
surface of c-Si are effectively passivated by a-Si:H, which possesses a
larger bandgap while being almost identical to c-Si at the nanoscale level
[26]. Beyond fostering strong covalent bonds between a-Si and c-Si, the
hydrogen atoms in a-Si:H play a crucial role in terminating any residual
dangling bonds, thereby enhancing the overall passivation quality[27].
In contrast to homojunction SSCs, HJT SSCs typically exhibit signifi-
cantly lower recombination rates, leading to high V,, values[28].
Additionally, a-Si:H can be doped, whether n-type or p-type, and pro-
vide carrier selectivity in a similar way as doped poly or single crystal-
line silicon[22]. This selective layer enhances carrier extraction by
establishing a unidirectional pathway for either electrons or holes[29].

Over the past decade, the notable enhancement in the record PCE of
SSCs primarily hinges on advancements in HJT technology, incorpo-
rating sophisticated passivating selective contacts[31]. As of November
2022, the certified highest PCE for single-junction SSCs has achieved
26.81 %, utilizing the HJT structure developed by LONGi. Soon enough,
they improved the PCE to 27.30 % by combining the HJT with an
interdigitated back-contact (IBC) structure, also known as hetero-
junction back-contact (HBC) solar cells[32]. Attributed to the superior
surface passivation quality and the effective extraction of charged car-
riers, HJT SSCs have garnered significant research attention, leading to a
substantial increase in publication numbers over the past two decades,
as shown in Fig. 1a. Recently, Long and coworkers proposed that the
practical PCE up limit of HJT SSCs can be as high as 28.5 %, which in-
dicates that there is still room for researchers to explore and enhance the
efficiency of HJT SSCs[33-35]. In recent years, great advances have
been made in terms of the scope and depth of the passivating selective
contacts in HJT SSCs[36]. In addition to conventional a-Si:H(i)/a-Si:H(n
or p) stacks, many advanced passivating selective contacts have been
devised for this purpose, such as the a-SiO4(i)/a-SiOx(n) stacks and
dopant-free asymmetric heterocontacts (DASH). Therefore, a progress
review screening and discussion of these recent advancements in a
broader context is believed to be beneficial for the ongoing development
of HJT technology, aiming for higher performance, enhanced stability,
and reduced costs.

Recent progress in selective passivating contacts for HJT SSCs clas-
sified by doped silicon-based materials, metal compounds, and organic
materials has been summarized in Fig. 1b-e. It is clear to see that con-
tacts based on doped silicon-based materials exhibit exceptional elec-
trical properties, achieving high FF and V, values that are approaching
their fundamental limits. The most outstanding electrical performance
observed for passivating selective contacts is still based on stacks with
doped amorphous silicon-based materials, while they suffer from optical
losses. The integration of HJT and IBC reports the highest efficiency,
which exhibits both superior electrical properties and optical advan-
tages due to the absence of front-side metal contacting that shades part
of the front surface of the solar cell. It is also worth mentioning that the
electrical performance of passivating selective contacts based on
dopant-free compounds is not yet on par with that of doped silicon-
based materials contacts with only efficiencies of just over 23 %
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reported to date. This discrepancy is largely attributed to the more
advanced state of silicon-based contacts in terms of the learning curve,
benefiting from the processing of billions of cells and enabling more
accurate optimization through statistical analysis while dopant-free
contacts are only investigated at the lab scale by research institutions
[30]. However, it’s noteworthy that FF values exceeding 80 % have been
achieved for all families of dopant-free contacts, suggesting efficient
charge-carrier extraction is feasible. Yet, for most metal
compound-based contacts, the gap to the FF limit appears notably
larger. On the other hand, metal compound-based contacts that achieve
V. values comparable to the best doped-silicon contacts do so by relying
on dedicated a-Si:H passivation layers. This underscores that while
certain metal compound materials can establish strong asymmetry in
carrier conductivity, they lag in terms of surface passivation. Moreover,
in comparison to doped-silicon materials and metal compounds,
research on passivating selective contacts based on organic materials
lags, with the maximum PCE only reaching 21 %. As shown in Fig. le,
due to their excellent transparency, metal oxides are among the most
promising candidates to replace doped silicon materials as passivating
selective contacts. However, their passivation quality and selectivity still
need improvement, ideally without the use of silicon-based passivation
layers.

This study systematically explores passivating selective contacts for
HJT SSCs, providing a comprehensive survey of research conducted over
the past decade. Section 2 focuses on the fundamental mechanisms and
theory of passivating selective contacts. Subsequently, we discuss the
evolution of passivation layers for HJT SSCs, emphasizing material
modifications. Then, we evaluate various selective layers, categorized
into doped silicon-based materials and dopant-free materials, including
transition metal oxides, other metal compounds, and organic materials.
Finally, we present our perspectives and highlight challenges within this
research domain.

2. Mechanisms and theories of passivating selective contacts
2.1. Surface passivation

Because of an abrupt disruption in the periodicity of the silicon
crystal, a significant quantity of dangling bonds (DB) are typically pre-
sent at the silicon interface, leading to a high density of surface states
[37]. These states exhibit distributed energy levels throughout the en-
ergy bandgap, which serve as highly dynamic centers for electronic
recombination, capturing excess electrons and holes[38]. They are
characterized by their density Dy and capture cross-sections o, or o,. In
situations of non-equilibrium, the driving force for recombination stems
from the charge imbalance. The recombination rate is influenced by Dy,
the surface density of electrons (n;) and holes (ps), and the likelihood,
per unit time, that an electron or hole will be captured by a specific state.
The capture probability relies on 6, o , and the thermal velocity (vy) of
the charge carriers. The semiconductor surface’s recombination activity
can quantified by the so-called surface recombination velocities (often
referred as S), where Spo = vipDjron, and Syo = v Dj:0p, corresponding to
electrons and holes, respectively. Here, vy, is approximately 107 cm/s
and sets an upper limit for the S values. The capture cross-section ratio of
mid-gap defects is notably asymmetric, with a generally higher affinity
for electrons. To simplify, D;; can be approximated as states at a single
energy N; at the mid-gap, given that recombination efficiency is most
significant in the middle of the bandgap. During illumination, the net
recombination at the surface is defined by a parameter known as the
effective surface recombination velocity, S, which can be calculated by
using the equation below([39,40]:

U.

A n(x=d) )

Seff =
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Fig. 1. a) The progress in the record power conversion efficiency (PCE) of heterojunction (HJT) solar cells with accumulated publication numbers during the year
2000-2024. The data on the number of publications is taken from Scopus (www.scopus.com). The progress in selective passivating contacts, classified by doped
silicon-based materials, metal compounds and organic materials, for HJT SSCs in terms of a) V., b)J,, and c)FF values (data extracted from Tables 1-4). e) A
summary of representative passivating selective contacts reported so far and their corresponding device performance. The contour plot illustrates the ideal cell
efficiency, assuming a Jsc of 43.31 mA/cm?, which corresponds to the theoretical Jsc of a 110 pm-thick c-Si solar cell and the star symbol marks this ideal solar cell
with an efficiency of 29.43 %. Reproduced with permission from [30] Copyright (2022) John Wiley and Sons.
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where U; represents the surface recombination rate, described by the
extended Shockley-Read-Hall (SRH) recombination equation under non-
equilibrium conditions[41]. An refers to the excess minority carrier
concentration at a virtual surface (located at the edge of the space charge
region, x = d, formed due to surface charge) rather than at the physical
silicon surface (x = 0). Here, n; is the intrinsic carrier concentration in
Si. Additionally, n; and p; denote the SRH densities of electrons and
holes, respectively, when the energy of the trap level coincides with the

Fermi level[42].

There are essentially two methods to decrease S,s. The initial
approach involves reducing N; through the deposition of a suitable
surface layer with a wider bandgap. Additionally, the bonding nature at
the interface can influence the capture cross-section ratio of surface
states. This refinement of interface properties is commonly referred to as
chemical passivation[43]. Achieving surface chemical passivation in-
volves many methods, such as immersing the wafer in a polar solution
and depositing passivation layers to reduce interfacial states or satu-
rating silicon dangling bonds. Usually, many approaches are employed
simultaneously, ensuring ample surface chemical passivation to fully
saturate the dangling bonds. This makes it an optimal method to prevent
carrier recombination for both electrons and holes. Secondly, given that
each defect necessitates the presence of both electrons and holes
concurrently, the recombination rate reaches its peak when n; = p, for
asymmetric capture cross-sections. Consequently, minimizing the sur-
face concentration of one of the charge-carrier types substantially re-
duces the recombination rate. The field-effect passivation, alternatively
termed charge-assisted population control, entails reducing either
ns or ps through an electrostatic field. Field passivation can be ach-
ieved by disrupting the equilibrium of carrier concentrations at the
interface[44]. The existence of the built-in potential can cause band
bending, creating an energy barrier that results in the accumulation or
depletion of either carrier type, thus reducing carrier recombination. In
the context of SHJ solar cells, the implementation of n-type and p-type
selective layers, which enable the unidirectional transport of electrons
and holes, respectively, introduces field effect passivation[45].

Silicon wafers with good passivation exhibit a high effective carrier
lifetime 7., which can be described in the equation below[42]:

1 1 n 1 3)

Teff Thulk Tsurf

where 7y, is the bulk carrier lifetime and 7y, is the surface carrier
lifetime. The passivation layers mainly contribute to the enhancement of
Touf. An alternative method for assessing the passivation effect involves
the analysis of recombination current density Jy. The surface recombi-
nation current density is defined by the equation below[42]:
qnSs,

JO.surf = IQI_DW (4)
where Nj, is the doping concentration. In the case of high-performance
SHJ solar cells, the 7,5 and Jo s typically exhibit values in the range
of several milliseconds and below 2 fA cm_z, respectively[46].

2.2. Charge carrier selectivity

For an SSC to operate effectively, it is imperative to selectively
extract photoexcited electrons and holes at the cathode and anode[22].
The interface between the metal and silicon in the conventional SSC
experiences a pinning effect, giving rise to the formation of a depletion
region in proximity to the contacts. Fermi level pinning (FLP) occurs due
to the establishment of a Schottky barrier at the metal-semiconductor
interface when the work function of the metal contact is unable to
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control the concentration of carriers[47]. Fortunately, the mitigation of
Fermi-level pinning can be achieved by physically separating the metal
electrode from the bulk silicon by using passivating selective contacts.
As illustrated in Fig. 2a, this necessitates establishing a path between the
absorber and each electrode, showcasing a notable asymmetry in con-
ductivity that favors one type of carrier[30]. This path is
well-established by the charge carrier selective layers (CSLs), which
exhibit asymmetry transport arising from external doping procedures or
its intrinsic material properties[30]. The performance of the solar cell is
highly dependent on the strength of this asymmetry. Electron transport
layers (ETLs) facilitating electrons, characterized by high electron con-
ductivity and a significantly lower hole conductivity, allow the passage
of electrons through the contact region while impeding holes[48].
Conversely, hole transport layers (HTLs) exhibit the opposite conduc-
tivity, aligning with hole selectivity.

Brendel and Peibst has proposed a quantitative definition of the
carrier selectivity, offering a more straightforward evaluation and
comparison of the selectivity across different materials, which is now
been widely used both in academic and industry [49]. According to their
model, a generalized expression for the carrier selectivity was summa-
rized in Eq. (5) below, with the assumption of ideal perfect Si wafer with
unity ideality factor, spatially constant carrier concentrations and re-
combinations[49].

Vi n T
S10 = log (W - (% - 1)) (5)

where Sjg is the logarithm of minority carrier selectivity S, Vg, is the
thermal voltage at a temperature of 298.15 K, r represents the recom-
bination rate, W is the wafer thickness, n and p denote for electron and
hole concentration, respectively, u, and y, stand for electron and hole
mobility, respectively, and n; is the intrinsic carrier concentration.

For a typical homojunction solar cell under illumination, the current
is carried predominantly by electrons on the phosphorus-diffused re-
gions, owing to the substantial conductivity of electrons[22]. Despite
holes experiencing a considerably larger driving force towards the
electron contact side, which corresponds to a greater gradient in their
quasi-Fermi energy, their current is inferior to the electron current due
to their significantly smaller hole conductivity[48]. In contrast, in a
conventional HJT solar cell exposed to light, the function of charge
separation and selective carrier transport is achieved through the pres-
ence of two wide bandgap selective layers with different conductivities
for electrons and holes[48]. This configuration guarantees minimal
minority carrier conductivity in the wide bandgap transport layers, both
in the absence and presence of illumination, reducing carrier recombi-
nation at the metal contacts[22].

2.3. Charge carrier transport

When contacting the ETL or HTL with c-Si, comprehending the en-
ergy band alignment at the interface of c-Si/CSL is crucial for under-
standing the mechanisms of charge carrier transport, as shown in
Fig. 2b-d.

As shown in Fig. 2b, the materials for the ETL are primarily n-type
wide-bandgap semiconductors. They need to exhibit a sufficiently small
conduction band offset (AE¢) in relation to c¢-Si. This ensures the smooth
transfer of electrons from c-Si to the ETL, while simultaneously pre-
venting the passage of holes due to a large valence band offset (AEy)
[50]. For HTL, there are two types of charge transport based on different
mechanisms. The first one is analogous to the HTL, as shown in Fig. 2c,
having a minimal AEy at the c-Si/HTL interface allows for the effective
transport of holes from c-Si to HTL, with electrons being impeded by the
large AE¢[50]. The second theory is based on the high work function
n-type materials, as shown in Fig. 2d and e. Upon the interaction of the
high work function n-type materials with c-Si, the energy band align-
ment results in a pronounced upward band bending on the c-Si surface.
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electrons (EFn) and holes (EFp). Post-excitation, carriers thermalize towards band edges. The free energy difference between quasi-Fermi levels is the implied voltage
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Copyright (2022) John Wiley and Sons. b) Depicts the band alignment between the n-type Electron Transport Layer (ETL) material and c-Si. Here, a low AEC
promotes electron transport, while a large AEV hinders hole movement. c) Illustrates the band alignment between the p-type Hole Transport Layer (HTL) material
and c-Si, where a low AEV facilitates hole transport and a large AEC prevents electron flow. The band alignment between n-type high Work Function Transition Metal
Oxides (TMOs) and c-Si is shown in d) and e), where hole transport is enabled by d) Back-to-Back (B2B) tunneling and/or e) Trap-Assisted Tunneling (TAT).

Reproduced with permission from [50] Copyright (2022) John Wiley and Sons.

Given the proximity of the conduction band of these high work function
n-type materials to the valence band of c-Si, holes generated in the
valence band of the c-Si absorber can traverse the contact interface
through a tunneling effect. Subsequently, these holes recombine with
electrons in the conduction band of the high work function n-type ma-
terials[50]. As illustrated schematically in Fig. 2d and e, the transfer of
holes from c-Si to these high work function n-type materials can occur
either through band-to-band (B2B) tunneling or trap-assisted tunneling
(TAT)[51]. In cases where the conduction band energy (Ec) of high work
function n-type materials surpasses the valence band energy (Ey) of c-Si,
holes transport via the B2B tunneling mechanism. Conversely, the TAT

mechanism prevails if the high work function n-type materials has
slightly lower E¢ than Ey of c-Si, aided by the abundance of traps near
the contact interface[52].

2.4. Contact resistivity

Besides the contact recombination current density (Jo.) discussed in
section 2.1, contact resistivity (p.) is another important parameter used
to evaluate the performance of passivating selective contacts. p, denotes
the interface resistance to collected charge carriers in the contact area,
indicating the resistive loss. A reduced p, is indicative of a higher FF
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value, which is highly dependent on the energy level alignment at the
interface[53]. Typically, there are two methods that can be used to es-
timate the p, value, including the transfer length method (TLM) and Cox
and Strack method (CSM)[54]. In a conventional TLM measurement,
metal electrode stripes are created with varying separation distances. I-V
curves are then recorded across pairs of electrodes with different spac-
ings. By fitting the Ry against the spacing between electrode stripes (D),
the transfer length (L) is derived by extending the fitting curve to the
x-axis. The intercept corresponds to 2Lr, and the y-intercept of the curve
represents 2R¢. The value of R¢ can be expressed by using the equation
below[55]:

_ P
L:Z

L

R
c L

coth(+) (6)

where Z and L denote the length and width of the metal stripes,
respectively.

The conventional CSM utilizes a vertical configuration featuring
circular metal electrodes of varying diameters on the front surface and
complete metallization on the backside[56]. This design minimizes
spreading current, resulting in reduced measurement errors. It is usually
assumed that the resistance of the back contact is negligible. Through
the measurement of current-voltage (I-V) curves for pads of different
diameters, the total resistances (RT) can be expressed using the equation
below[57]:

_Ap P

4t
T= R + d arctan (E) + Ry @

where d represents the pad diameter, p, denotes the resistivity of Si, t
stands for the Si thickness, and Ry is the residual resistance. By creating a
plot of Ry against 1/d, the p, can be determined through curve fitting
[58]. The widespread use of CSM and TLM techniques has facilitated the
exploration and evaluation of new CSL materials that demonstrate
Ohmic contact with ¢-Si[59].

It is crucial to recognize that while contacts can be highly selective,
they may lack sufficient conductivity, leading to a detrimental drop in
fill factor (FF). Conversely, some contacts may offer good selectivity but
suffer from poor passivation. For instance, in c-Si cells, aluminum back-
surface field contacts provide high selectivity and conductivity but
underperform due to inadequate passivation. Similarly, an amorphous
silicon (a-Si) heterojunction hole contact to c-Si, comprising thick
intrinsic and doped a-Si layers, delivers excellent selectivity and
passivation, resulting in high iV, and V,.. However, its poor conduc-
tivity diminishes both FF and overall efficiency. In summary, a well-
designed passivating selective contact must simultaneously offer
strong passivation, high conductivity, and effective selectivity, as these
factors directly impact key solar cell parameters. Effective passivation
enhances quasi-Fermi level (gFL) separation, thereby increasing iVoc
within the absorber. High conductivity minimizes resistive losses at the
maximum power point, preserving a high FF. Finally, strong selectivity
reduces voltage losses at the contact, allowing the actual V, to approach
or match the iV,.[60].

3. Passivation layers
3.1. Hydrogenated amorphous silicon

In comparison with homojunction solar cells, HJT SSCs usually
exhibit superiority in surface passivation, showing a high V,. value.
Well-established passivation layers for homojunction solar cells, such as
silicon oxides (SiOy), aluminum oxides (AlOy), and silicon nitride (SiNy),
have been comprehensively reviewed by other works and will not be
focused here[41,61-63]. In a typical HJT SSC, a thin film of a-Si:H(i) is
deposited between the selective layer and the c-Si as the passivation
layer[64]. It is well known that this a-Si:H(i) passivating layer should
possess a high hydrogen content, be grown epitaxially free, and exhibit
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good optoelectrical properties[65,66]. A high-quality a-Si:H(i) layer and
an excellent a-Si:H/c-Si interface can function to inhibit tunneling,
reduce dangling bonds, and decrease the complexation rate[67].
Plasma-enhanced chemical vapor deposition (PECVD), a non-
invasive and cost-effective approach, is widely used for the prepara-
tion of a-Si:H(i) layer[68]. This deposition is a low-temperature process
using silane (SiHy), often diluted by hydrogen (Hy) plasmas, which is a
dynamic process, as the entire film undergoes alterations induced by the
reactive plasma. During the process, critical factors such as substrate
temperature, air pressure, gas ratio, and RF power density should be
carefully controlled[69]. The microstructure and optoelectrical prop-
erties of the a-Si:H(i) layer play a significant role, where the formation of
voids and epitaxial growth deteriorate surface passivation[65]. The
layer produced in the intermediate region between the amorphous and
crystalline phases has been proven to showcase excellent surface
passivation quality[70]. At this stage, the interface between a-Si:H(i)
and c-Si is fully relaxed, with minimal electron-active defects[64].
Attaining the high-quality a-Si:H(i) layer involves strategies such as
using a higher hydrogen flow rate during deposition and applying pre/
post hydrogen plasma treatment[65]. For example, Descoeudres and
co-workers demonstrated superior surface passivation by using a
multi-step approach involving pure silane plasma deposition followed
by hydrogen plasma annealing. They reached carrier lifetimes up to
5.9 ms with 17 nm intrinsic a-Si:H layers on FZ polished wafers[73].
Morales-Vilches and co-workers reported an a-Si:H(i) layer with a higher
minority lifetime showing iV, up to 736 mV by using a diluted plasma
with a SiH4 to Hy ratio of 1:1[74]. The effectiveness of passivation
offered by the a-Si:H(i) layer often reduces after the deposition of the
doped a-Si film[75]. This is possibly related to Si-H fracture in the a-Si:H
(i) film, where the epitaxial layer can be created after depositing the
doped selective layer[76]. In this regard, an intrinsic bilayer passivation
method has been proposed|[71,77]. In adopting a bilayer approach, the
deposition process can be segmented into the initial deposition stage and
the growth stage. The function of the initial deposition stage is pivotal
for achieving a well-defined interface. During the initial stage, an
ultra-thin buffer layer is deposited using a pure silane plasma, followed
by the subsequent stage where silane is diluted with hydrogen to com-
plete the deposition[78]. As compared in Fig. 3 a and b, the il layer
possesses a markedly porous structure, which acts as a barrier to inhibit
epitaxial growth[71]. The i2 layer exhibits minimal defects with high
compactness, contributing to a denser film and consequently delivering
more effective passivation quality than the single-layer passivation[79].

3.2. Hydrogenated amorphous silicon carbides

To impede epitaxial growth, incorporating carbon into the passiv-
ation layer proves to be a viable strategy, as carbon atoms contribute to
enhancing disorder in the amorphous Si layer[80,81]. Furthermore,
hydrogenated amorphous silicon carbides [a-SiCx:H(i)] demonstrate a
higher bandgap up to 4 eV compared to a-Si:H(i), leading to a sub-
stantial reduction in parasitic absorption when used as the passivation
layer[82,83]. Nevertheless, the efficiency of a-SiCy:H(i) passivated de-
vices still lag, primarily due to the commonly observed high density of
interface traps at the a-SiCy:H(i)/c-Si interface, particularly with an
increased carbon atomic concentration[84]. The introduction of carbon
into a-SiCyx:H induces structural defects and inhomogeneities. Ehling and
co-workers reported that a reduced carbon content ([CH4]/[(CH4) +
(SiH4)]) of 1.3 % correlated with a higher minority lifetime value of
1.2 ms. A low absorption strength ratio implies a dense structure when
carbon incorporation is low. However, with increased carbon content,
the diffusion of hydrogen to the interface is hindered by the stronger C-H
bond. This reduction in hydrogen atoms at the a-SiCy:H(i)/c-Si interface
results in a deterioration in passivation quality[85]. The perceived
benefits of using carbon do not outweigh the potential drawbacks
associated with increased defectiveness in these alloyed layers.
Recently, Donercark and co-workers suggested employing a stacked
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Fig. 3. Cross-sectional TEM images with schematic diagrams of front-junction SHJ solar cells prepared with a) single a-Si:H(i) layer, and b) two-step a-Si:H(i) layers
or bilayers (i1 + i2). Reproduced with permission from [71] Copyright 2018 AIP Publishing. c) schematic diagrams detail the continuous-plasma CVD composite
gradient passivation, nanocrystalline sowing, and vertical growth induction steps. The continuous plasma CVD process maintains stable RF plasma (fluctuation <
+0.5 %), monitored in real-time with rapid-response regulation to protect the epitaxy-preventing i:a-SiOx:H (1) subnanolayer. The composite gradient passivation
involves creating low-damage i:a-SiOx:H (1)/a-Si:H (2) layers with a gradually transitional interface through continuous-plasma CVD. d) Schematic diagrams of the
solar cell in Li’s work. e) Current density to voltage (J-V) diagram of the champion solar cells in Li’s work. Reproduced with permission from [72] Copyright 2024

Springer Nature.

structure comprising a-Si:H(i) and a-SiCx:H(i) to enhance interface
passivation quality and ensure the utilization of the large band gap of
a-SiCy:H(i) to minimize optical absorption losses, simultaneously. By
inserting a 3 nm intrinsic a-Si buffer layer between the c-Si and intrinsic
a-SiCx layers, they achieved an effective lifetime of 100 ps and an
implied open-circuit voltage (iV,.) of 650 mV [84].

3.3. Hydrogenated amorphous silicon oxides

In addition to a-SiCy:H(i), various efforts have been made to address
parasitic absorption in a-Si:H(i) film by incorporating oxygen[86,87].
Hydrogenated amorphous silicon oxides [a-SiOx:H(i)], possessing higher
electronegativity compared to a-SiCx:H(i), can generate a lower defect
state[88]. Ascribed to its tunable band gap and high-quality surface
passivation, making a-SiOx:H(i) a viable passivation layer in HJT SSCs
[89]. Utilizing a-SiOy:H(i) as a passivation material has also been
demonstrated to hinder epitaxial growth. This observation is linked to

the creation of an abrupt interface by the a-SiO5:H(i) passivation layer
[90]. The a-SiOx:H(i) passivated cells usually exhibit higher J;. value
than a-Si:H(i) passivated cells, due to the wider band gap of a-SiOy:H(i)
film. However, for a-SiOx:H(i) passivation layer, it is crucial to assess the
equilibrium between passivation and carrier transport. Zhang and
co-workers observed that an increase in gas ratio of CO2/C0O2:SiH4 from
0.33 to 0.4 enhanced AEy, resulting the transport of photogenerated
electrons and compensating for absorption losses in the a-SiOy:H(i)
passivation layer due to porosity and high defect density[91]. However,
such a gas ratio above 0.4 led to reduced photovoltaic performance,
attributed to poor passivation quality on the backside and hindered hole
transport due to a higher energy barrier. To avoid such issues and pre-
vent the mismatch of valence band, it is advisable to use the a-SiOx:H(i)
layer as a passivation layer on the front surface field side of the n-type
silicon wafer in SHJ solar cells[91]. The a-SiOx:H(i) passivation layer,
when applied to the front side, enhanced Jg¢ value, while a-Si:H(i)
functioned as an effective post-passivation interface when used as a
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passivation layer on the rear side, culminating in an overall photovoltaic
efficiency of 22.2 %[90]. Very recently, Li and co-workers reported a
two-step composite gradient passivation approach to address the
aforementioned contradiction, as shown in Fig. 3c and d[72]. During the
initial stage, a sub-nanolayer (<0.5 nm) of oxygen-containing amor-
phous silicon (i:a-SiOx:H (1), x ~ 10 at%) was deposited on both sides of
c-Si using PECVD. This ultrathin passivation layer [i:a-SiOx:H (1)] serves
to disrupt the crystal arrangement periodicity of c-Si without signifi-
cantly affecting the electrical properties of the passivation contacts. In
the subsequent stage, an epitaxy-free layer of amorphous silicon [i:a-Si:
H (2)] with a thickness of approximately 4.5 nm was intentionally
applied on i:a-SiOx:H (1). This additional layer enhances the passivation
effectiveness and acts as a barrier to isolate the subsequent doping layers
from the underlying structure, contributing to an increase in effective
lifetime from 2.8 ms to 5.0 ms. As a result, the HJT SSC by using this
strategy reached a record PCE of 26.81 % with a high V,. value of
0.751 V, as shown in Fig. 3e[72].

3.4. Other materials

Besides amorphous silicon-based materials, other wide bandgap
materials such as metal oxides also exhibit the passivation effects on c-
Si. Gerling and co-workers demonstrated that molybdenum oxides
(MoOy), vanadium oxides (VOy), and tungsten oxides (WOx) possess
inherent passivation capabilities arising from the reduced density of
surface electrons due to their high work function[92]. This passivation is
further supported by the presence of a SiOx layer formed through the
redox reaction between the metal oxides and c-Si. They highlighted that
the induced band bending might be mitigated by dipole effects, and the
SiOy layer formed may exhibit limitations in passivating the interface
due to potential defects. Among these three materials, VOx demonstrates
the best passivation effect on n-type c-Si, with an implied V. of 653 mV
and a Jo. of 150 fA/cmz, followed by MoOy (637 mV and 230 fA/cm?)
and WOy (543 mV and 420 fA/cm?). Liao and co-workers illustrated that
titanium oxides (TiOy) can provide effective surface passivation quality
through a process involving low-temperature atomic layer deposition
(ALD) followed by post-deposition annealing and light-soaking[93].
TiOy stands out as the most effective surface passivation material among
various metal oxides, and notably, it achieves this without the need for a
pre-existing SiOy layer. Recently, Yang and co-workers achieved incre-
mental improvements in TiOyx passivated HJT SSCs, showing iV, up to
700 mV reaching PCE of 22.1 %[94]. The primary enhancement was
attributed to an increased V) of the cell facilitated by the incorporation
of an ultrathin thermally grown SiOy layer. This addition aimed to
enhance surface passivation quality, albeit with a slight rise in contact
resistivity.

Nevertheless, it is obvious that these wide bandgap materials cannot
provide as effective passivation as with the amorphous silicon-based
materials. This can be attributed to the lattice mismatch between
these materials and c-Si[43]. There are investigations that distinctly
indicate that silicon-based materials deposited through PECVD yield the
lowest surface recombination velocity values[43]. On the other hand,
the lack of hydrogen during the preparation of these wide bandgap
materials as the passivation layer can be another reason.

4. Selective layers
4.1. Doped silicon-based materials

External doping is typically required to achieve charge carrier
selectivity in silicon-based materials[95]. Depending on the type of
doping, these materials can create an interface between themselves and
c-Si that only allows one type of charge carrier to pass through[95].
N-type doped silicon-based materials form electron-selective contacts,
while p-type doped silicon-based materials form hole-selective contacts.

As summarized in Table 1, the commonly employed selective layers
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Table 1
Summary of device performance using doped silicon-based materials as selective
contacts in chronological order.

Publication Device structure Voc Jsc FF PCE Ref
time W) (mA/ (%) (%)
cm?)

2004 Ag/ITO/a-Si:H 0.605  28.2 79 13.5 [118]
(p)/a-Si:H(i)/n-c-
Si/pe-Si(n)/Al

2006 Ag/1TO/nc-Si:H 0.558  31.88 79.19  14.09 [119]
(n)/a-Si:H(i)/p-c-
Si/Al

2006 Ag/ITO/a-Si:H 0.617  32.4 76.5 15.25 [120]
(n)/pm-Si:H/p-c-
Si/Al

2007 Al/a-Si:H(p)/p-c- 0.56 35 72.4 14.2 [121]
Si/pc—3 C-SiC:H
(n)/ITO/Al

2007 Ag/AZ0O/a-Si:H 0.596  31.46 65.7 12.3 [122]
(n)/a-Si:H(i)/p-c-
Si/a-Si:H(p)/Al

2007 Al/Si-NC:SiC(p)/ 0.463 19 53 4.66 [123]
n-c-Si/Al/Ti

2008 Ag/ITO/pc-SiO:H 0.62 32.1 77 15.32 [124]
(n)/a-SiO:H@3)/p-
c-Si/a-SiO:H(p)/
Al

2008 Al/Ag/ITO/pc- 0.671 35.2 76 17.9 [125]
Si0:H(p)/a-SiO:
H(i)/n-c-Si/a-Si:
H(i)/a-Si:H(n)/
Ag/Al

2008 Ag/AZ0O/a-Si:H 0.639  39.3 78.9 19.8 [126]
(n)/p-c-Si/a-Si:H
(p)/Al

2009 Ag/ITO/nc-Si 0.615 325 71 14.2 [127]
(n)/a-Si(i)/p-c-
Si/Al

2009 Ag/ITO/pc-Si 0.583 30.61 74.2 13.25 [128]
(n)/a-Si(i)/p-c-
Si/Al

2009 Ag/AZ0O/a-Si:H 0.62 31.9 63.61 12.58 [129]
(p)/Si0y/n-c-Si/
a-Si:H(n)/Al

2009 Ag/ITO/a-Si:H 0.585  34.63 74.7 15.14 [130]
(n)/a-Si:H(i)/p-c-
Si/Al

2009 Al/Ag/ITO/pc- 0.665  34.9 77 17.8 [131]
SiO:H(p)/a-SiO:
H(i)/n-c-Si/a-Si:
H(i)/a-Si:H(n)/
Ag/Al

2010 Al/Ag/ITO/ 0.668  36.7 73.1 17.9 [132]
nc—3 C-SiC:H
(n)/p-c-Si/pe-
Si1-xOx:H(p)/Al

2010 Ag/ITO/a-Si:H 0.717  38.2 74.2 20.3 [73]
(p)/a-Si:H(i)/n-c-
Si/a-Si:H(i)/a-Si:
H(n)/ITO/Ag

2011 Al/Ag/1TO/a-Si: 0.631  36.27 76.13  17.43 [133]
H(p)/a-Si:H(i)/n-
c-Si/a-Si:H(i)/a-
Si:H(n)/Al

2011 Ag/ITO/a-Si:H 0.694 31.4 76 16.5 [134]
(p)/a-Si:H(@i)/n-c-
Si/a-Si:H(i)/a-Si:
H(n)/BZO/Ag

2011 Ag/ITO/a-Si:H 0.659 34.7 80.9 18.5 [135]
(n)/a-Si:H(i)/p-c-
Si/pe-SiOx:H(p)/

Al

2011 Ag/GZO/a-Si:H 0.612 37.1 76 17.27 [136]
(p)/a-Si:H(i)/n-c-
Si/GZO/Ag

2011 Ag/ITO/a-Si:H 0.69 39.1 72.7 19.6 [137]

(p)/a-Si:H(i)/n-c-

(continued on next page)
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Table 1 (continued)

Table 1 (continued)
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Publication Device structure Voc Jsc FF PCE Ref Publication Device structure Voc Jsc FF PCE Ref
time w) (mA/ (%) (%) time W) (mA/ (%) (%)
cmz) cmz)
Si/a-Si:H(i)/a-Si: 2016 Ag/1TO/a-Si(p)/ 0.618  40.1 74.1 18.4 [155]
H(n)/ITO/Ag n-c-Si/a-Si(n)/
2012 Al/Zn0O/a-Si:H 0.59 33.6 71 14.1 [138] ITO/Ag
(n)/a-Si:H(i)/p-c- 2016 Ag/ITO/nc-SiOx: 0.704 37.7 76.7 20.4 [156]
Si/Al H(n)/a-Si:H(i)/n-
2013 Ag/10:H/ITO/a- 0.727  38.9 78.4 221 [139] c-Si/a-Si:H(i)/nc-
Si:H(p)/a-Si:H SiOx:H(p)/ITO/
(i)/n-c-Si/a-Si:H Ag
(i)/a-Si:H(n)/ 2016 Ag/1TO/a-Si:H 0.71 38.77 75.43  20.78 [157]
ITO/Ag (p2)/a-Si:H(p1)/
2013 Ag/SiOx/ITO/a- 0.662  35.7 74 17.6 [140] a-Si:H(i)/n-c-Si/
Si:H(p)/a-Si:H a-Si:H(i)/a-Si:-H
(i)/n-c-Si/a-Si:H (n)/ITO/Ag
(n)/Al 2016 Ag/1TO/pc-SiOx: 0.646  35.83 75.5 17.47 [157]
2013 Ag/Al/ITO/a-Si: 23.43 35.1 73.2 17.1 [141] H(p)/a-SiOx:H
H(p)/a-Si:H(i)/n- (i)/n-c-Si/a-SiOy:
c-Si/a-Si:H(i)/a- H(i)/pc-SiOx:H
Si:H(n)/Al (n)/AZO/Ag
2013 Ag/BZO/a-Si:H 0.593  35.26 78.05 16.3 [142] 2016 Ag/ITO/a-Si:H 0.721  36.9 79.3 21.1 [44]
(p)/n-c-Si/a-Si:H (p)/a-Si:H(i)/n-c-
(n)/ITO/Ag Si/a-Si:H(i)/pc-
2013 Ag/Al/ITO:Zr/a- 0.71 33.66 72.4 17.31 [143] Si:H(n)/ITO/Ag
Si:H(p)/a-Si:H 2016 Ag/IWO/a-Si:H 0.737 38.3 78 22.5 [158]
(i)/n-c-Si/a-Si:H (p)/a-Si:H(i)/n-c-
(i)/a-Si:H(n)/Al/ Si/a-Si:H(i)/a-Si:
Ag H(n)/IWO/Ag
2014 Ag/ITO/In203/ 0.67 37.42 71.16 17.84 [144] 2016 Ag/ITO/pc-SiOy: 0.646 38.5 72.9 18.15 [159]
a-Si:H(p)/a-Si:H H(n)/a-SiO:H
(i)/n-c-Si/a-Si:H (1)/p-c-Si/pe-
(i)/a-Si:H(n)/ SiOx:H(p)/AZO/
ITO/Ag a-Si:H textures/
2014 Ag/ITO/a-Si:H 0.647  38.1 74.7 18.41 [145] AZO/Ag
(p)/a-Si:H(i)/n-c- 2016 Ag/ITO/a-Si:H 0.694 37.2 79.1 20.44 [160]
Si/a-Si:H(i)/a-Si: (n)/a-Si:H(i)/p-c-
H(n)/Ag Si/SiOx/Si(i)/
2014 Ag/ITO/a-Si:H 0.725  33.82 77.41 19 [146] SiCy(p)/1ITO/Ag
(p2)/a-Si:H(pl)/ 2016 Ti/Ag/ITO/nc-Si: 0.727 38.8 74.5 21 [161]
a-Si:H(i)/n-c-Si/ H(p)/a-Si:H(i)/n-
a-Si:H(i)/a-Si:H ¢-Si/a-Si:H(i)/nc-
(n)/ITO/Ag SiOx:H(n)/AZO/
2014 Al/ITO/a-Si:H 0.72 35.5 73 18.66 [147] Ag
(n)/a-Si:H(@)/p-c- 2017 Ag/AZ0O/a-Si:H 0.551 33.39 71.1 13.09 [162]
Si/Al (p)/a-Si:H(i)/n-c-
2014 AZO/pc-Si:H(p)/ 0.708  34.35 79.1 19.2 [148] Si/Al
a-Si:H(i)/n-c-Si/ 2017 Ag/In,03:H/a-Si: 0.73 39.18 73.9 21.13 [163]
a-Si:H(i)/pc-Si:H H(n)/a-Si:H(i)/n-
(n)/AZO/Al c-Si/a-Si:H(i)/a-
2015 Al/Ag/1TO/a-Si: 0.696  36.09 71 18.06 [149] Si:H(p)/ITO/Ag
H(p)/a-Si:H(i)/n- 2017 Ti/Ag/ITO/a-Si: 0.594 36.98 72.93  16.02 [164]
c¢-Si/a-Si:H(i)/jc- H(n)/a-Si:H(i)/p-
Si:H(n)/Al. c-Si/BSF/Al
2015 Ag/ITO/pc-Sil- 0.738  33.46 77 19 [150] 2017 Ag/ITO/pc-SiC:H 0.677 37.6 74.2 28.9 [165]
xOx:H(p)/a-Si:H (n)/pc-SiOx:H
(i)/a-SiOx:H(i)/n- (n)/a-SiOx:H(31)/
c-Si/a-SiOx:H(@)/ p-c-Si/a-SiOxH
a-Si; xOx:H(n)/ (1)/ue-SiOx:H(p)/
Ag/Al ITO/Ag
2015 Ag/1Z0/a-Si:H 0.722  38.6 78.5 21.5 [151] 2017 Ag/ITO/a-Si:H 0.68 40.2 60 16.3 [166]
(p)/a-Si:H(i)/n-c- (n)/a-Si:H(i)/n-c-
Si/a-Si:H(i)/a-Si: Si/a-Si:H(i)/a-Si:
H(n)/ITO/Ag H(p)/In,03:H/Ag
2015 Ag/IWO/a-Si:H 0.73 38.3 80.44 225 [152] 2017 Ag/Al/ITO/pc- 0.715 349 78 19.4 [167]
(p)/a-Si:H(i)/n-c- SiO:H(p)/a-SiO:
Si/a-Si:H(i)/a-Si: H(i)/n-c-Si/a-
H(n)/IWO/Ag SiO:H(i)/a-Si:H
2015 Ag/IWO/a-Si:H 0.727  38.56 78.48  22.03 [153] (n)/Al/Ag
(n)/a-Si:H(i)/n-c- 2017 Ag/Al/ITO/pc- 0.701 32.8 76.8 17.7 [168]
Si/a-Si:H(i)/a-Si: Si(100x:H/a-Si;.-
H(p)/IWO/Ag xOx:H/n-c-Si/a-
2015 Ag/BZ0O/a-Si:-H 0.628 41.75 67.8 17.78 [154] Si(1.x0x:H/a-Si:
(p)/a-Si:H(i)/n-c- H/Ag/Al
Si/a-Si:H(i)/a-Si: 2017 Al/Ag/ITO/pc- 0.702  35.32 76.3 18.9 [169]
H(n)/BZO/Ag SiO4Cy:H(p)/a-Si:

H(i)/a-SiOx:H(®{)/

(continued on next page)
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Table 1 (continued)

Table 1 (continued)
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Publication Device structure Voc Jsc FF PCE Ref Publication Device structure Voc Jsc FF PCE Ref
time w) (mA/ (%) (%) time W) (mA/ (%) (%)
cmz) cmz)
n-c-Si/a-SiOx:H (i)/a-Si:H(p)/
(i)/a-Si:H(n)/Ag ITO/Ag
2017 Al/Ag/1TO/a- 0.54 30.5 74.2 12.2 [170] 2020 Ag/ITO/pc-SiC:H 0.737  39.5 77.1 21.6 [185]
SiOx(In)/n-c-Si/ (n)/Si02/n-c-Si/
Al a-Si:H(i)/a-Si:H
2017 Ag/SiOy/IWO/a- 0.739  38.74 80.64  23.08 [171] (p)/ITO/Ag
Si:H(p)/a-Si:H 2020 Ag/MGZO/a-Si:H 0.706 36.72 73.3 19.02 [186]
(i)/n-c-Si/a-Si:H (p)/a-Si:H(i)/n-c-
(i)/a-Si:H(n)/ Si/a-Si:H(i)/a-Si:
IWO/Ag H(n)/MGZO/Al
2017 Ag/ITO/pc-SiOx: 0.616 35 71.35  15.38 [172] 2020 Al/AZO/a-Si:H 0.744  42.43 83.7 25.26 [187]
H(p)/a-Si:H(i)/n- (n)/a-Si:H(®i)/p-c-
¢-Si/a-Si:H(i)/a- Si/a-Si:H(p)/Al
Si:H(n)/ITO/Ag 2020 Ag/ITO/nc-SiOy: 0.712  39.3 78.6 22 [188]
2017 Ag/ITO/a-Si:H 0.714  38.8 79.8 21.9 [173] H(p)/nc-Si:H(p)/
(n)/a-Si:H(i)/n-c- a-Si:H(i)/n-c-Si/
Si/a-Si:H(@i)/p- a-Si:H(i)/nc-Si:H
SiCy/ITO/Ag (n)/nc-SiOx:H
2017 Ag/IWO/a-Si:H 0.745 39 79 22.74 [174] (n)/nc-Si:H(n)/a-
(n)/a-Si:H(i)/n-c- Si:H(n)/ITO/Ag
Si/a-Si:H(i)/a-Si: 2020 Ag/ITO/pc-SiOx: 0.740  39.19 82.33  23.87 [189]
H(p)/IWO/Ag H(n)/seedlayer/
2017 Ag/ITO/nc-SiOy: 0.729 40 80 21.6 [175] a-Si:H(i)/n-c-Si/
H(n)/a-Si:H@i)/n- a-Si:H(i)/a-Si:H
c-Si/a-Si:H(i)/a- (p)/ITO/Ag
Si:H(p)/ITO/Ag 2020 Ag/ITO/nc-Si:H 0.739 38.7 80.7 23.1 [190]
2017 Ag/ITO/a-Si:H 0.731 37.46 79.3 21.71 [176] (n)/nc-SiOxH
(n)/a-Si:H(i)/n-c- (n)/a-Si:H(i)/n-c-
Si/a-Si:H(i)/a-Si: Si/a-Si:H(i)/a-Si:
H(p)/ITO/Ag H(p)/ITO/Ag
2018 Ag/ITO/nc-SiOy: 0.731 383 80.6 22.6 [97] 2020 Ag/TCO/nc-SiOx: 0.729  39.99 78.06  22.77 [191]
H(n)/nc-Si:H(n)/ H(n)/a-Si:H(i)/n-
n-c-Si/a-Si:H@i)/ c-Si/a-Si:H@i)/
a-Si:H(p)/ITO/ p*/TCO/Ag
Ag 2020 Ag/1TO:Zn(Ar)/ 0.739  39.12 75.97  21.96 [192]
2018 Ag/ITO/nc-Si:H 0.691  33.9 79.4 18.6 [177] ITO:Zn(05)/a-Si:
(n)/mp-SiOx(n)/ H(p)/a-Si:H({i)/n-
chem.SiOy/n-c- c-Si/a-Si:H(i)/a-
Si/a-Si:H(i)/a-Si: Si:H(n)/Ag
H(p)/ITO/Ag 2020 Ag/SiN,/SiO,/ 0.707 39.45 80.3 22.4 [193]
2018 Ag/ITO/MoOy/a- 0.6 38.2 72.9 16.7 [178] n*/n-c-Si/mp-Si
SiO4(Mo)/n-c-Si/ (i)/SiOx/mp-Si
a-SiOy/poly-Si (i)/pe-Si(p)/1TO/
(n)/Al Ag
2019 Ag/AZ0/nc-Si:H 0.73 39.94 78 22.6 [179] 2020 Ag/ITO/poly- 0.741 38.1 81.6 23 [194]
(n)/a-Si:H(i)/n-c- SiCx(n)/SiO/p-c-
Si/a-Si:H(i)/a-Si: Si/SiOyx/poly-
H(p)/1TO/Ag SiCx(p)/1TO/Ti/
2019 Ag/ITO/pc-SiOy: 0.727 39 77 21.8 [102] Pd/Ag
H(n)/pc-SiOx:H 2020 Ag/ITO/nc-Si:H 0.73 39 77 21.9 [195]
seed layer/a-Si:H (n)/a-Si:H(i)/n-c-
(i)/n-c-Si/a-Si:H Si/a-Si:H(i)/a-Si:
(1)/pe-SiOx:H(p)/ H(p)/AZO/Ag
ITO/Ag 2020 Ag/1TO/a-Si:H 0.723 39 79 21.2 [196]
2019 Ag/ITO/a-Si:H 0.726  40.81 80.87  23.96 [180] (n)/a-Si:H@{)+
(p)/a-Si:H(i)/n-c- Catdoping/n-c-
Si/a-Si:H(i)/a-Si: Si/a-Si:H(i)/a-Si:
H(n)/AZO/Ag H(p)/ITO/Ag
2019 Ag/AZO/nc-Si:H 0.72 39.1 75.4 21.2 [181] 2020 Ag/ITO/nc-SiOy: 0.719  38.85 80.41  22.47 [197]
(n)/a-Si:H(i)/n-c- H(n)/a-Si:H(i)/n-
Si/a-Si:H(i)/a-Si: c-Si/a-Si:H(i)/nc-
H(p)/AZO/Ag SiOx:H(p)/ITO/
2019 Ag/ITO/a-Si:H 0.719 38.15 76.91 21.1 [182] Ag
(p)/a-Si:H(>i)/n-c- 2020 Ag/1TiO/a-Si:H 0.736  39.14 82.7 23.81 [198]
Si/pe-SiOx:H/ (n)/a-Si:H(i)/n-c-
poly-Si(n)/Ag Si/a-Si:H(i)/a-Si:
2019 Ag/IFO:H/nc- 0.702 38.32 78.08 21.01 [183] H(p)/ITiO/Ag
SiOx(p)/a-Si:-H 2020 Ag/TWOH/nc-Si: 0.733  39.48 81.4 23.54 [199]
(i)/n-c-Si/a-Si:H H(p)/a-Si:H(i)/n-
(i)/nc-SiOx(n)/ c-Si/a-Si:H(i)/a-
IFO:H/Ag Si:H(n)/IWOH/
2019 Ag/17Zr0/ITO/a- 0.742  38.18 82.4 23.59 [184] Ag
Si:H(n)/a-Si:H 2020 Ag/ITO/a-Si:H 0.741 39 81.6 23.6 [200]

(i)/n-c-Si/a-Si:H
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(n)/a-Si:H(i)/n-c-

(continued on next page)
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Publication Device structure Voc Jsc FF PCE Ref Publication Device structure Voc Jsc FF PCE Ref
time w) (mA/ (%) (%) time W) (mA/ (%) (%)
cmz) cmz)

Si/a-Si:H(i)/a-Si: 2022 Ag/TWO/a-Si:H 0.719  38.68 82.07 22.84 [216]

H(p)/AZO/Ag (n)/a-Si:H(i)/n-c-
2021 Ag/ITO/a-Si:H 0.724 39.1 81.1 23 [201] Si/a-Si:H(i)/a-Si:

(p)/a-Si:H(i2)/a- H(p)/ITO/Ag

Si:H(i1)/n-c-Si/ 2022 Ag/ITO/a-Si:H 0.681 38.06 79.38  20.56 [217]

a-Si:H(il)/a-Si:H (p)/a-Si:H(i)/n-c-

(i2)/a-Si:H(n)/ Si/a-Si:H(i)/a-Si:

ITO/Ag H(n)/ITO/Ag
2021 Ag/Au/Ti/SiNy/ 0.729  38.3 79.9 22.34 [202] 2022 Ag/IWO/a-Si:H 0.735  39.02 77.57  22.23 [90]

a-Si:H(n)/a-Si:H (n)/a-SiOx:H(i)/

(i)/n-c-Si/a-Si:H n-c-Si/

(i)/a-Si:H(p)/ underdense a-Si:

TCO/Ag H(@)(HPT)/a-Si:H
2021 Ag/ITO/nc-SiOy: 0.729  40.5 80 23.6 [203] (p)/IWO/Ag

H(n)/a-Si:H(i)/n- 2022 Ag/IMO:H/p-Si: 0.746 40 84.64  25.26 [218]

c-Si/a-Si:H(i)/a- H(n)/n-c-Si/a-Si:

SiOx:H(p)/nc- H(i)/a-Si:H(p)/

SiOx:H(p)/ITO/ ITO/Ag

Ag 2022 Ag/1TO/nc-Si:H 0.742  39.27 82.2 23.95 [219]
2021 SiN,/a-Si:H(i)/n- 0.71 41.3 78.2 229 [204] (n)/a-Si:H(i)/n-c-

c-Si/a-Si:H(i)/nc- Si/a-Si:H(i)/a-Si:

Si:H(n)/ITO/Ag H(p)/ITO/Ag
2021 Ag/MgFy/IWO/ 0.731 40.16 78.07 22.92 [205] 2022 Ag/1TO/n-poly- 0.723 40.9 81 23.95 [220]

a-Si:H(n)/a-Si:H Si0,/SiO4/n-c-

(i)/n-c-Si/a-Si:H Si/a-Si:H(i)/a-Si:

(i)/a-Si:H(p)/ H(p)/ITO/Ag

IWO/Ag 2022 Ag/ITO/AZO/ 0.738 38.62 83.4 23.8 [221]
2021 Ag/ITO/nc-SiOy: 0.731  39.8 81.4 23.7 [206] ITO/a-Si:H(n)/a-

H(n)/a-Si:H(i)/n- Si:H(i)/n-c-Si/a-

c-Si/a-Si:H(i)/a- Si:H(i)/a-Si:H

Si:H(p)/ITO/Ag (p)/AZO/Ag
2021 Ag/IWTO/a-Si:H 0.746  38.7 82.9 23.8 [207] 2022 Cu/IMO/nc-SiOy: 0.746  40.24 85.08  25.54 [222]

(n)/a-Si:H(i)/c-Si H(n)/a-Si:H(i)/n-

(n)/a-Si:H(i)/a- ¢-Si/a-Si:H(i)/a-

Si:H(p)/IWTO/ Si:H(p)/1TO/Cu

Ag 2023 Ag/ITO/nc- 0.732 395 77.95 2255 [223]
2021 Ag+Al/ITO/nc- 0.678 36.6 77 19.11 [208] SiO4(n)/SiOx/nc-

Si:H(p*)/nc- Si/SiOy/n-c-Si/

SiOx:H(p)/nc-Si: Si0,/nc-Si/Si0y/

H(p)/a-Si:H(i)/n- nc-SiOx(p)/ITO/

c-Si/a-Si:H(i)/ Ag

n*/ITO/Al 2023 Ag/ITO/a-Si:H 0.718  36.5 77.5 20.3 [224]
2021 Ag/ITO/nc-Si:H 0.754 37.85 81.5 23.27 [209] (p)/a-Si:H(i)/n-c-

(p)/a-Si:H(i)/n-c- Si/a-Si:H(i)/a-Si:

Si/a-Si:H(i)/a-Si: H(n)/Al

H(n)/ITO/Ag 2023 Ag/ITO/a-Si:H 0.722 40.33 79.6 23.19 [225]
2021 Ag/ITO/a-Si:H 0.724  38.95 75.9 21.4 [210] (p)/a-Si:H(i)/n-c-

(p)/a-Si:H(i)/n-c- Si/a-Si:H(i)/a-Si:

Si/SiOy/nc- H(n)/ITO/Ag

Si0x(n)/ITO/Ag 2023 Ag/170/a-Si:H 0.743 38.35 84.22 24.02 [226]
2021 Ag/TWO/nc-SiOy: 0.744  38.3 84.4 24.09 [211] (n)/a-Si:H(i)/n-c-

H(n)/a-Si:H(i)/n- Si/a-Si:H(i)/a-Si:

c-Si/a-Si:H(i)/a- H(p)/1Z0/Ag

Si:H(p)/IWO/Ag 2023 Ag/MgF,/1TO/ 0.739  41.19 82.7 25 [227]
2021 Ag/Si0,/TCO/ 0.747  39.79 82.79  24.61 [212] cond.nc-SiC:H/

nc-Si:H(n)/a-Si:H passi nc-SiC:H/

(i)/n-c-Si/a-Si:H Si0y/n-c-Si/a-Si:

(i)/a-Si:H(p)/ H(i)/a-Si:H(p)/

TCO/Si0y/Ag ITO/Ag
2021 Ag/ITO/nc-Si:H 0.714 38.82 80.1 22.2 [213] 2023 Ag/IWO/a-Si:H 0.74 38.87 82.13 23.65 [228]

(n)/a-Si:H(i)/n-c- (n)/a-Si:H(i)/n-c-

Si/a-Si:H(i)/a- Si/a-Si:H(i)/a-Si:

SiOx:H(p)/nc-Si: H(p)/GZO/Ag

H(p)/1ITO/Ag 2023 Ag/ITO/pc-SiOx: 0.745  39.89 84.85  25.22 [229]
2022 Ag/ITO/nc- 0.71 39.3 79 22 [214] H(n)/a-Si:H(i)/n-

SiOx(p)/a-Si:H c-Si/a-Si:H(i)/a-

(i)/n-¢-Si/SiOx/ Si:H(p)/ITO/Ag

poly-Si(n)/ITO/ 2023 Ag/TCO/nc-SiOx: 0.751  41.45 86.07  26.81 [230]

Ag H(n)/a-Si:H(i)/n-
2022 Ag/Al,03/1Z0/a- 0.74 40.53 72.33 21.57 [215] c-Si/a-Si:H(i)/nc-

Si:H(n)/a-Si:H Si:H(p)/TCO/Ag

(i)/n-c-Si/a-Si:H 2023 Ag/THfO:H/pc-Si: 0.745  40.09 83.79  25.03 [231]

(i)/a-Si:H(p)/
ITO/Ag
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H(n)/a-Si:H(i)/n-
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Table 1 (continued)

FF
(%)

PCE
(%)

Jsc Ref
(mA/

cmz)

Voc

(%)

Publication Device structure

time

c-Si/a-SiOH(i)/a-
Si:H(p)/ITO/Ag
Ag/ITO/pc-SiOx:
H(n)/a-Si:H(i)/n-
c-Si/a-SiOx:H(i)/
a-Si:H(p)/ITO/
Ag
ITO/a-Si:H(p)/a-
Si:H(i)/n-c-Si/a-
Si:H(n)/Aerogel/
Ag
Ag/IMO:AZO/
p-Si:H(n)/a-Si:H
(i)/n-c-Si/a-Si:H
(i)/p-Si:H(p)/
IMO:AZO/Ag
Ag/SiOy/1ZrO:H/
nc-Si:H(p)/nc-
SiOx:H(p)/nc-Si:
H(p)/SiOx/a-Si:H
(i)/n-c-Si/a-Si:H
(i)/a-Si:H(n)/nc-
Si:H(n)/ITO/
MgF,/Ag
Ag/a-Sn02/nc-
SiOy:H(n)/a-Si:H
(i)/n-c-Si/a-Si:H
(i)/nc-Si:H(p)/a-
Sn0,/Ag
Ag/ICO/nc-Si:H
(n)/a-Si:H(i)/n-c-
Si/a-Si:H(i)/nc-
Si:H(p)/1ZrO/Ag
Ag/ITO/a-Si:H
(n)/a-Si:H(i)/c-Si
(n)/a-Si:H(i)/
WO,/Ag
Ag/AlO,/ITO/a-
Si:H(n)/a-Si:H
(i)/n-c-Si/a-Si:H
(i)/a-Si:H(p)/
ITO/AlOy/Ag
Ag/GZO+ITO/
nc-SiOy:H(n)/a-
Si:H(i)/c-Si(n)/a-
Si:H(i)/nc-Si:H
(p)/ITO/Ag
Ag/ITO/a-Si:H(i)
with Cat-doping/
c-Si(n)/a-Si:H(i)/
a-Si:H(p)/ITO/
Ag

2023 0.742  39.98 85.74  25.44 [232]

2023 0.734  39.76 80.3 23.42 [233]

2023 0.747  40.1 85.48  25.62 [218]

2023 0.731 40.74 82.05 24.44 [234]

2023 0.714  39.37 22.18 [235]

2023 0.747 39.98 82.18 24.55 [236]

2023 0.697 37.86 79.61 21.01 [237]

2023 0.742  39.2 82.6 24 [238]

2024 0.741 39.12 82.03 23.8 [239]

2024 0.734  39.83 81.18  23.76 [240]

are doped a-Si:H layers, which induce the necessary band bending for c-
Si/ doped a-Si:H. These layers mitigate recombination losses by estab-
lishing an adequate electric field at the interface[98,99]. Adequate band
bending facilitates the unimpeded transport of one type of charge car-
riers while impeding the movement of carriers of opposite polarity, as
shown in Fig. 4a. These layers, typically 5-6 nm thick, are deposited
with appropriate doping using agent gases such as trimethyl boron
(TMB), biborane (B3Hg), and phosphine (PHs). These films are deposited
using the PECVD method in the same equipment as the intrinsic a-Si:H
layers. Therefore, the optical and electrical properties of doped a-Si:H
films are also significantly influenced by deposition parameters such as
process temperature, pressure, and the flow rates of Hy and SiH4 gases
[65]. The outstanding electrical properties of doped a-Si:H layers are
pivotal in enhancing the performance of HJT solar cells, signifying sig-
nificant advancements in their PCE[28,100]. Indeed, numerous reported
HJT solar cells with high PCE values over 25 % are founded on doped
a-Si:H selective layers[72,100]. However, to enhance the PCE of HJT
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solar cells further, doped a-Si:H selective layers face constraints. Un-
desirable parasitic optical absorption can arise across the ultraviolet and
visible spectrums of the solar spectrum owing to the relatively narrow
band gap and the high defect density within the doped a-Si:H[101].
Moreover, silicon-based materials must be adequately doped to facilitate
effective carrier separation and collection, while a-Si:H exhibits a low
doping efficiency[44].

This has sparked increasing interest, particularly in the past five
years, in utilizing doped hydrogenated nanocrystalline silicon (nc-Si:H)
materials as a substitute for doped a-Si:H, potentially incorporating
oxygen to form a mixed-phase nanocrystalline silicon oxide alloy
[102-104]. As shown in Fig. 4b, hydrogenated nanocrystalline
silicon-based materials comprise a combination of amorphous and
nanostructured phases[105-107]. Essentially, nc-Si:H, nc-SiOx:H, and
nc-SiCyx:H can be viewed as nanostructured silicon embedded within
a-Si:H, a-SiOx:H, and a-SiCy:H, respectively[108-110]. The alloying
characteristics of nc-SiOy:H and nc-SiCy:H contribute to their wider band
gaps, which serve to reduce optical absorption. For example, as shown in
Fig. 4 c and d, switching the front selective contact layer from nc-Si:H(n)
to the nc-SiOx:H(n), the loss in absorption can be reduced by
0.63 mA/cm?[97]. For integrating these nanocrystalline silicon mate-
rials into HJT solar cells, achieving rapid nucleation without compro-
mising passivation quality or hindering current collection is a challenge
[111]. Kohler and co-workers observed that employing hot wire chem-
ical vapor deposition (HWCVD) for depositing nc-SiCx:H(n) at elevated
filament temperatures (Tf) leads to a reduction in i-Vpc[112]. This
decrease is attributed to the higher hydrogen density at elevated Tg
(1850°C), causing etching of the SiOy passivation layer. A similar effect
is observed when nc-SiOx:H(n) is utilized as selective layers[113]. This
phenomenon arises from the elevated T¢, which prompts hydrogen in the
precursor gas to permeate through microcrystalline and amorphous
silicon thin films. Subsequently, hydrogen gradually accumulates within
micropores at the interface of a-SiOx:H(i)/c-Si, leading to a reduction in
passivation quality[113]. Nevertheless, achieving high T¢ is crucial for
attaining high conductivity. As T¢ increases within the range of
1700-1900°C, conductivity escalates significantly by nine orders of
magnitude[112]. The conductivity in nc-SiCx:H(n) primarily originates
from its nanostructured phase[114]. By introducing only a small amount
of doping gas (a few ppm), nc-Si:H can achieve a much higher electrical
conductivity compared to the a-Si:H layer[115]. Consequently, mate-
rials like nc-SiCx:H and nc-SiOx:H exhibit superior conductivity and
more pronounced field-effect passivation compared to a-Si:H[115].

Nevertheless, it’s important to note that such high conductivity can
only be achieved after the nucleation stage. Initiating microcrystalline
nucleation necessitates the presence of loosely connected silicon net-
works. This helps lower the energy barrier for transitioning from a-Si:H
to nc-Si:H, especially under high-hydrogen dilution conditions[116]. In
pursuing high-efficiency cells, it’s vital to deposit highly conductive
nanolayers, ensuring sufficiently high crystallization, on a thin intrinsic
passivation layer while maintaining excellent passivation quality in the
intrinsic layer[97,111]. Employing a pre-deposition treatment has been
identified as crucial, whether by employing an oxidizing plasma for
p-type layers or by utilizing a high-phosphorous-doped seed layer for
n-type layers[104,117]. Mazzarella and co-workers observed that while
achieving a higher J;. without a seed layer (nc-Si:H), there was a clear
lower effective lifetime of 1.3 ms and iV, of 727 mV[97]. However,
they achieved a high cell performance of 22.6 % by depositing a seed
layer of nc-Si:H before the nc-SiOy:H layer. Similarly, Pham and
co-workers demonstrated that a nc-SiOx:H layer with a nc-Si:H seed
layer can facilitate a swift transition from an amorphous to a nano-
crystalline phase, leading to increased PCE. It is worth mentioning that
the world record cell with the PCE of 26.81 % is also based on doped
nc-SiOx:H selective layers. They pioneered a self-repairing nano-
crystalline seeding technique, enabling doped contact layers to sprout
and propagate upward from the pre-established nano seeds, creating
pathways for "photogenerated carrier superhighways" between the
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Fig. 4. a) Schematic diagrams of the band bending in HJT solar cells with doped a-Si:H as selective layers on both sides.Reproduced with permission from [65]
Copyright 2018 Springer Nature. b) TEM and HRTEM image of nc-SiOx:H/a-SiOx:H multilayer film, where inset shows the nanocrystal phase embedded in silicon
oxide matrix [96]. Simulated absorption and reflection spectra for HJT solar cells with ¢) doped (n)nc-Si:H and d) doped (n)nc-SiOx:H as the selective layer.

Reproduced with permission from [97] Copyright 2018 Elsevier.

upper and lower layers[72].

In summary, the use of doped silicon-based materials as selective
layers has demonstrated promising results for achieving high perfor-
mance in HJT solar cells. However, their relatively low bandgap still
leads to significant parasitic absorption, limiting further enhancements
in PCE. Additionally, the doping process is environmentally unfriendly
and expensive, requiring toxic doping sources and capital-intensive
equipment. So far, there is debate on the optimal doping concentra-
tion in the a-Si layers to achieve the best balance between high con-
ductivity and minimized recombination losses. High doping improves
carrier transport but may increase defect density. As an alternative, a
dopant-free approach is emerging, aiming to replace doped Si materials
with wide bandgap materials to mitigate parasitic absorption losses. The
selection and extraction of free charge carriers can be achieved without
resorting to doping methods, as the energy band offset inherent to the
material’s work function allows for the same mechanism. A sufficiently
high or low work function can maintain either an accumulation or
inversion regime at the surface when illuminated, thereby enabling
asymmetric electron or hole conduction. Also, these dopant-free mate-
rials can be produced using simple and cost-effective deposition tech-
niques such as thermal evaporation and solution-processed methods,
potentially reducing production costs

4.2. Dopant-free materials

4.2.1. Metal oxides

Transition metal oxides (TMOs) represent a significant category of
dopant-free solutions with work functions spanning from 3.5 eVto 7 eV,
primarily falling under the classification of wide bandgap semi-
conductors, as shown in Fig. 5a. These layers boast exceptional trans-
parency, stability, and availability, providing a suitably aligned
conduction or valence band offset concerning silicon. Additionally, TMO
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layers exhibit minimal parasitic losses. Compared to doped silicon-based
materials, TMO selective layers offer advantages in terms of lower
deposition costs and greater compatibility with industrial processes.
TMOs, characterized by their high work function, function as hole-
selective layers due to their n-type nature, which arises from the pres-
ence of oxygen vacancies in their atomic structure. Commonly utilized
HTLs include MoOy, WOy, and VOy[241-243]. These layers’ elevated
work functions result in hole accumulation near the surface, inducing
band bending in the c-Si absorber and facilitating high hole conductiv-
ity. Materials such as TiOyx, HfOy, ZnO, and TaOx serve as ETLs, with
their high electron conductivity promoting electron collection at the
terminal[244-247]. Several research groups have proposed the forma-
tion of an interface dipole in conjunction with band bending as the
mechanism for carrier collection[53,59]. For TMOs, their electronic
characteristics, including electron affinity (Ea), work function (WF), and
other factors, significantly influence the band alignment with c-Si and
thus determine carrier selectivity[50]. The WF and conductivity of
TMOs primarily depend on the number of oxygen deficiencies, which
can be affected by factors such as substrates, fabrication techniques, and
post-deposition treatments[248-251].

So far, the PCE of HJT solar cells utilizing TiOx or MoOx as the se-
lective layer has steadily increased, while those utilizing other TMOs as
the selective layers, such as WOy, VOy, ZnO, and TaOy, have lagged.
Therefore, the widely reported TiOx and MoOy will be discussed as
illustrative examples. Regarding TiOy as the ETL, theoretical simulations
indicate that when the E, of TiOy falls within the range of 3.6-4.0 eV,
the interfacial recombination rate tends to be low, potentially leading to
high PCE in solar cells[256]. If the Ea of TiOy is less than 3.6 eV, it can
enhance the built-in electric field, but this may lead to increased
recombination and compromise cell efficiency[253]. Conversely, if the
Ep of TiOx exceeds 4 eV, it can result in a higher energy barrier for
electron transport. However, empirically reported E5 of TiOy typically
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Fig. 5. a) Bandgap diagrams and WF positions (dashed lines) of typical dopant-free selective materials including metals, metal compounds, and organic materials,
referenced to c-Si energy band edges (gray bar). Energy levels are indicative and vary with deposition methods, stoichiometry, and doping concentrations.
Reproduced with permission from [50] Copyright 2022 John Wiley and Sons. b) The Band diagram demonstrated the carrier transport mechanism of the HJT solar
cell based on MoOx as the selective layer. Reproduced with permission from [252] Copyright 2021 Elsevier. ¢) Structure and J-V curves of HJT solar cell featuring a
TiOx or SiOx/TiOx stack selective contact. Reproduced with permission from [253] Copyright 2016 John Wiley and Sons. d) Contact resistance vs. LiFx thickness for
heterocontacts with TiOx (purple) and a-Si:H (i) (green) interlayers. Reproduced with permission from [254] Copyright 2016 Springer Nature. e) Chemical molecular
structure and morphology of PEDOT:PSS. Reproduced with permission from [255] Copyright 2017 The American Association for the Advancement of Science.

falls between 4.0 and 4.3 eV[257]. Wu and co-workers discovered that
Ea of TiOy varies with the Ti/O ratio, and a relatively high Ea can be
achieved with a high oxygen content in the TiOx film[258]. Zhu and
co-workers found that annealing under continuous Hj and Ar flux can
create oxygen vacancies in TiOy, the concentration of which can be
utilized to adjust the Ep of TiOx (ranging between 2.2 and 4.5 eV) and
conductivity in a controlled manner[259]. Regarding MoOy as the HTL,

14

which exhibits WF range from 4.5 eV to 6.9 eV, theoretical calculations
suggest that it needs a sufficiently high WF (>5.5 eV) to ensure effective
field-effect passivation at the contact interface, reducing surface
recombination and achieving optimal V. with limited requirements for
chemical passivation[56,260]. The higher WF of MoOy positions its
Fermi energy level closer to the valence band of c-Si, causing the crea-
tion of a larger conduction band offset at the MoOy/c-Si interface,
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inducing more efficient hole inversion, as shown in Fig. 5d[51,252].
This phenomenon has been illustrated by Mehmood and co-workers,
wherein adjusting the WF of MoOy from 4.5 eV to 5.7 eV led to PCE of
HJT solar cells increased from 1.62 % to 23.32 %[261]. Battaglia and
co-workers discovered that subjecting evaporated MoOy films deposited
on gold substrates to UV-ozone exposure for 30 minutes can elevate its
WF to as high as 6.6 eV[262]. Gregory and co-workers found that HF
treatment could further increase the WF of MoOy, as observed from UPS
spectra[263].

In the context of device performance, as summarized in Table 2, for
the first time, TiOx deposited using a modified CVD process was applied
on the front side of p-Si solar cells as ETL, resulting in a PCE of 7.1 %
[264]. However, this was constrained by high carrier recombination on
both sides and poor lateral conductivity of TiOy. Later, Yang and
co-workers achieved a breakthrough with TiOyx ETL by developing an
ALD-deposited TiOx-based contact, which provided excellent surface
passivation and low contact resistivity simultaneously[253]. A low
effective surface recombination velocity of 11 cm/s, equivalent to a Jy of
approximately 20 fA/cm? was achieved on n-Si passivated with a
5.5 nm ALD TiOx layer[253]. Chao and co-workers integrated ALD-TiOx
into the structure of a-Si:H(i)/TiOx/low-WF metal contact. This config-
uration successfully achieved high-quality passivation and a low contact
resistivity, resulting in an 18.2 % efficient device. As a result, there was
no longer a need for a heavily doped a-Si:H layer[265]. In 2016, Yang
and co-workers made gradual advancements in solar cells with TiOy as
the ETL, achieving a PCE of 22.1 %[94,253,266]. The primary
enhancement stemmed from enhancing the V. of the cell through the
incorporation of an extremely thin thermally grown SiOy layer, which
enhanced surface passivation quality albeit with a minor rise in contact
resistivity, as shown in Fig. 5c. Furthermore, these studies also high-
lighted the significant contribution of the capping Al electrode to elec-
tron selectivity. Indeed, while the a-Si:H/TiOyx stack demonstrated
impressive surface passivation qualities, the illuminated J-V curve of the
device featuring an a-Si:H/TiOy contact displays an "S-shape," suggest-
ing inadequate electron selectivity[267,268]. Besides Al, using a low WF
material for capping, such as LiF, Ca, and Yb, has proven effective in
enhancing the electron selectivity of TiOy-based ETLs[241,269,270].
Through the integration of a partial TiOx/LiF and TiOyx/Ca passivating
contact on n-Si solar cells, remarkable efficiencies of 23.1 % and 21.8 %
were attained, respectively[241,269]. Similarly, with Yb capping, a
textured Si/a-Si:H/TiOy/Yb hetero-contact exhibited a very low p.
(~1 mQ-cmZ), leading to a noteworthy PCE of 19.2 %[270].

Compared to other TMOs, MoOy is more widely reported as the HTL
in HJT solar cells. In 2011, Park and co-workers presented a study where
they achieved a 6.26 % efficiency in a-Si:H based thin film solar cells by
employing thermally evaporated MoOy film instead of a-SiCy:H(p) films
[271]. Following this, in 2014, Battaglia and co-workers integrated
MoOx films into HJT solar cells to replace the a-Si:H(p) layers, resulting
in significant optical improvements[272]. This enhancement led to a
total photocurrent increase of 2.4 mA/cm? and achieved a high effi-
ciency of 18.8 %, V,c of 711 mV, and J, of 39.4 mA/cm?[272,273].
Later, Cho and co-workers investigated the interface properties and
thermal stability of MoOy films, achieving a PCE of 19.3 %, V,. of
724 mV, and FF of 0.74[274]. HJT solar cells were fabricated using a
10 nm thick MoOx film, resulting in a PCE of overpassing 20 % and an
effective minority carrier lifetime of 2.3 ms[275]. Recently, Kumar and
co-workers achieved a high PCE of 20 %, V,. of 695 mV, FF of 0.74, and
Jsc of 38.9 mA/cm?[275,276]. Jinhun and co-workers reported a high
Vo of 730 mV, FF of 0.78, and efficiency of 21.3 % with a 3 nm thick
MoOy HTL[277]. More recently, Geissbuhler and co-workers achieved
an efficiency of 22.5 % and FF of 80 % using a MoOx HTL[278]. So far,
the highest device PCE employing the MoOx HTL in HJT solar cells is
23.83 %, as reported by Cao and co-workers[279]. They utilized a 4-nm
thick MoOy layer, deposited via thermal evaporation, positioned be-
tween an a-Si:H passivating layer and an tungsten-doped indium oxide
(IWO) and MgF, stack. The exceptional device performance primarily
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stems from the superb passivation offered by the intrinsic a-Si:H layer,
along with the high transparency and good selectivity of the thin MoOyx
layer.

It is worth mentioning that the electronic characteristics of TMOs can
be impacted by various factors during solar cell fabrication, including
exposure to air, contact with reducing agents, and heating, all of which
may influence the ultimate performance of the solar cell. Exposure to
air, for instance, can lead to the reduction of metal oxides through re-
actions with hydrogen and water, or the adsorption of additional ele-
ments such as carbon and other metals[30,92]. For example, MoOy as
HTL can induce instability in HJT solar cells[262,280,281]. Before and
after the contact annealing process, oxidation occurs, leading to a
reduction in the WF of MoOy and an increase in the p., consequently
impairing the photoelectrical performance. The conditions of annealing
and plasma processing, as well as the stability of the deposited MoOy
layer, may dictate the formation of an interfacial a-SiOy layer within the
a-Si:H(i)/MoOy stack[282]. Moreover, unless a pre-annealing step of the
a-Si:H layer before MoOy deposition is implemented, degradation of the
MoOx film can transpire during annealing for screen-printed metalliza-
tion, triggered by hydrogen effusion from the adjacent a-Si:H(i) layer,
thereby detrimentally impacting hole extraction and transport from the
c-Si wafer[283]. Herein, although TMOs as selective layers in HJT solar
cells continuously achieved promising PCE results, there is the ongoing
debate over how much efficiency can be sacrificed for improved sta-
bility. For example, MoOy can be sensitive to environmental factors,
which can lead to degradation of the device over time. More in-
vestigations are required to evaluate their stabilities. It’s worth
compromising slightly on efficiency if the passivating contacts signifi-
cantly enhance stability, while others prioritize immediate gains in
efficiency.

4.2.2. Other metal compounds

Besides TMOs, various other metal compounds such as halides, ni-
trides, sulfides, phosphides, and carbonates have been explored as
dopant-free selective layers for HJT solar cells[348,371-379]. Among
these materials, metal halides exhibit minimum parasitic absorption loss
due to their large band gap, usually larger than 10 eV[379]. Several
studies have demonstrated that metal halide films, deposited via thermal
evaporation and thinner than 10 nm, exhibit crystalline structures, such
as rock-salt or fluorite configurations. Schottky and Frenkel defects are
frequently observed in these ionic solids, leading to the trapping of
carriers and the formation of F- or H- centers, thus allowing for the
generation of small-radius polarons[380]. Because these defects have a
lower energy of formation at the surface compared to the bulk, there is a
suggestion that the charge accumulation at the interface with other
materials aids in charge transport[381,382]. Inspired by the organic
semiconductors, many initial studies are based on LiFy in HJT solar cell,
which successfully demonstrated that LiFyx can reduce series resistance
significantly as ETL[383,384]. The LiFyx, known for its extremely low
work function of approximately 2.9 eV, can achieve very low contact
resistances of around 1 mQecm? and 7 mQecm? on the c-Si/LiFy and
c-Si/a-Si:H(i)/LiFx HJT structure, as shown in Fig. 5d[254]. A PCE of
19.4 % was achieved on HJT solar cells utilizing full-area LiFx ETL[254].
This was subsequently improved to 20.7 % by implementing a TiOx/LiFx
bilayer design with enhanced thermal stability[244]. In 2016, James
and co-workers reported a PCE of 20.6 % by using a partially contacted
LiFx as ETL, attributed to its remarkably low contact resistivity[385]. In
addition to the LiF,, the MgFy with low WF of around 3.5 eV is also
widely investigated, where the c-Si/MgFyx and c-Si/a-Si:H(i)/MgFx HJT
demonstrated a low p. value of approximately 35mQecm? and
76 oncmZ, respectively[376]. In 2016, Cuevas and co-workers ach-
ieved a PCE of 20.1 % by using MgF as the ETL in HJT solar cells[376].
Later on, Ballif and co-workers improved this PCE to 22.1 % by using Mg
capping on top of MgFyx in the IBC device structure[386]. Moreover,
there are also many studies focused on other metal halides, including
KFy, CaFy, and CsFy as the ETL, and Cul as the HTL, however their device
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Table 2
Summary of device performance using metal oxides as selective contacts in chronological order.

Publication time Device structure Voc (V) Jsc (mA/cm?) FF (%) PCE (%) Ref
2013 Ag/Al/ITO:Zr/a-Si:H/n-c-Si/Al 0.71 34.44 74.83 18.3 [284]
2014 Ag/ITO/MoOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.711 39.4 67.2 18.8 [272]
2014 Ag/Mo0O3/PEDOT:PSS/n-c-Si/Liq/Al 0.63 29.2 74.9 13.8 [285]
2015 Ag/ITO/MoOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.725 38.6 80.36 22.5 [278]
2015 Ag/ITO/V50x/n-c-Si/a-SiC o:H(i)/a-Si:H(n)/a-SiC:H/Ti/Al 0.606 34.4 75.3 15.7 [242]
2016 SiNy/SiO2/n-c-Si/V20x(Cs203)/Ag 0.61 38.85 70 16.59 [286]
2016 Ag/ZnO NW/p-c-Si/Al 0.52 48.31 36.46 9.17 [287]
2017 Ag/PEDOT:PSS/n-c-Si/TiOx/Al 0.643 30.7 72.4 14.3 [288]
2017 Ag/ITO/V50s/n-c-Si/a-SiCo 2:H(1)/a-Sig o:H(n)/a-SiC:H/Ti/Al 0.605 34.5 74.7 15.6 [289]
2017 Ag/ITO/Mo0y/a-Si:H(i)/n-c-Si/a-Si:H(i)/BZO/Ag 0.599 38.12 72.7 16.6 [290]
2017 Ag/Al,03/SiNx/p+/n-c-Si/SiO/TiO2/Al 0.676 39.6 80.7 21.6 [267]
2017 Al/AZO/Zn, xMgxO/ZnO-NR/p-c-Si/Al 0.49 37 72 13.2 [291]
2017 Ag/ITO/WOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.705 32 76 16.8 [292]
2017 Ag/ITO/a-Si:H(n)/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(p)/MoOy/ITO/Ag 0.73 37.25 77.5 21.8 [277]
2017 Ag/ITO/MoOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.724 39.05 74.5 20.7 [293]
2017 Ag/PEDOT:PSS/n-c-Si/TiOz/Al 0.62 31 75.96 14.6 [294]
2017 Ag/TiO,/PDMS/PEDOT:PSS/n-c-Si/Al 0.632 31.98 76.74 15.51 [295]
2017 Ag/ITO/Mo00y/n-c-Si/MgOy/Al 0.595 32.6 73.4 14.2 [51]
2018 ITO/MoOy/n-Si/SiOx/low-WFMs(Mg) 0.71 39.1 78.5 21.8 [296]
2018 Ag/p-(Cuz0:N/CuO:N/CuO:Pd/Cu0)/Ti/n-c-Si/Al 0.46 28.5 63 8.3 [297]
2018 Ag/PEDOT:PSS/n-c-Si/AZO/Al 0.641 27.6 78 13.6 [298]
2018 Ag/ITO/MoOy/n-c-Si/a-Si:H(n)/GaP/ITO/Ag 0.598 34.3 69 14.1 [299]
2018 Ag/ITO/MoOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.71 36.75 75.9 20.8 [283]
2018 Ag/ITO/NiO:Cu/n-c-Si/n"/Mg/Al 0.378 35.6 67.7 9.1 [300]
2018 Ag/ITO/ZnS/p-c-Si/WO3/Ag 0.525 33.75 61.73 10.94 [301]
2018 Ag/ITO/NiO:Cu/SiOx/n-c-Si/Mg 0.428 36.2 69.4 10.8 [302]
2018 PEDOT:PSS/MoO,/Ag/PEDOT:PSS/SiNWs/n-c-Si/Al 0.622 33.5 78 16.3 [303]
2018 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/TiOy/Ca/Al 0.711 35.1 72.9 18.2 [265]
2018 Ag/TiO2/SiNWs/n-c-Si/Al 0.553 18.4 60.3 6.15 [304]
2018 Ag/ITO/MoOy/n-c-Si/a-SiC.2)(i)/a-Si:H(n)/a-SiC:H(BRC)/Al 0.614 32.8 73.2 14.7 [305]
2018 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/AZO/Al 0.672 38.23 71.95 18.46 [306]
2018 Ag/ITO/Mo0Oy/a-SiOx:H/n-c-Si/a-SiOx:H/a-Si:H(n)/ITO/Ag 0.675 31.7 77.4 16.6 [307]
2018 Ag/AZ0O/n-CdS/p-c-Si/MoO3/Ag 0.543 28.75 68.13 10.64 [308]
2018 Ag/PEDOT:PSS/n-c-Si/SnO,/Ag 0.593 33.16 72 14.16 [309]
2018 Ag/ITO/Mo00y/n-SiNWs/Cs,CO3/Al 0.631 38.1 70.2 16.9 [310]
2018 Ag/PEDOT:PSS/n-c-Si/a-Si:H(i)/Li-ZnO/Al 0.623 33.58 72.38 15.14 [311]
2018 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.69 38.88 74 20 [276]
2019 Ag/V20x/Ag/V20x/n-c-Si/Aly03/TiO2/Mg/Al 0.618 27.1 79.5 13.3 [312]
2019 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/TiOx/Yb/Ag 0.732 33.8 78.6 19.2 [270]
2019 ITO/V20s/n-SiNWs/TiO5/Al 0.49 35.7 72.7 12.7 [313]
2019 Ag/ITO/Mo00y/n-c-Si/LiF,/Al 0.563 34.35 72.18 13.96 [314]
2019 Ag/AZO NRs/AZO seed layer/p-c-Si/Al 0.529 30 39.38 6.25 [315]
2019 Ag/PEDOT:PSS/n-c-Si/TiO2/LiFy/Al 0.626 31.9 75.6 15.1 [316]
2019 Ag/PEDOT:PSS/n-c-Si/MgO,/Al 0.623 33.8 73.9 15.5 [317]
2019 Ag/ITO/CdS/n-c-Si/MoOy/Ag 0.483 35.45 71.62 12.29 [318]
2019 Ag/1TO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/SiOx/Sn02/Mg/Al 0.695 37.71 71.11 18.6 [319]
2019 Ag/ITO/s-MoOy/n-c-Si/Ti/Pd/Ag 0.465 30.92 56.6 8.13 [320]
2019 Ag/ITO/MoOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.724 36 74.1 19.3 [274]
2019 Ag/MoOy/n-c-Si/LiFx/Al 0.587 31.64 58.18 10.81 [321]
2019 Ag/SiNx:H/n" /p-c-Si/M0O,/Ag 0.632 36.21 80.89 18.49 [322]
2019 Ag/ITO/NiO,/SiOy/n-c-Si/SiOx/LiFy/Al 0.58 36.9 71.06 15.2 [323]
2019 Ag/PEDOT:PSS/n-c-Si/SiOy/EDTA-SnO42/Ag 0.562 28.8 71.2 11.52 [324]
2019 Ag/ITO/Mo03/n-c-Si/n**/Al 0.572 33.9 66.5 12.89 [325]
2019 Ag/ITO/MoOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/TiOx/Yb/Ag 0.65 33.9 73.7 16.3 [326]
2020 Ag/ITO/MoOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.734 39.15 81.77 23.48 [327]
2020 Ag/ITO/Cu,0:B/n-c-Si/Ag 0.37 36.5 40.6 5.48 [328]
2020 Ag/ITO/a-Si:H(n)/a-Si:H(i)/n-c-Si/a-Si:H(i)/MoOy/Ag 0.713 37.5 78.92 21.1 [329]
2020 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/MgO/Al 0.687 33.8 72.4 16.8 [330]
2020 Ag/ITO/MoOy/n-c-Si/LiFy/Al 0.574 34.89 72.55 14.53 [331]
2020 Ag/PEDOT:PSS/n-c-Si/TiO2/Ag/Al 0.616 28.5 70.9 13.08 [332]
2020 Ag/MoOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/LiF/Al 0.666 41.6 73.2 20.3 [333]
2020 Ag/SiN,/n"/p-c-Si/Si0x/M0Oyx/Ag 0.603 36.45 72.14 15.86 [334]
2020 Ag/ITO/WOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/Ag 0.66 35.91 56.07 13.29 [335]
2020 Al/AZO/nc-SiOx:H(n)/a-Si:H(i)/n-c-Si/a-Si:H(i)/MoOy/Ag 0.678 33.6 73.5 16.7 [336]
2020 Ag/SiN,/n"/p-c-Si/UV-S8i0,/M0Oy/V50,/ITO/Ag 0.626 38.5 82.8 20 [337]
2020 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/LPD-TiO,/Al 0.6 31.5 77.8 14.7 [338]
2020 Ag/ITO/In,S3/p-c-Si/MoOy/Ag 0.461 36.93 62.94 10.72 [339]
2020 Ag/1TO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/ZnO/LiF,/ITO/Al 0.727 37.6 78 21.3 [340]
2021 Ag/ITO/MoOs3/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.716 37.5 74.01 19.86 [252]
2021 Ag/ITO/Mo00y/SiOx/Mo0S,-QD/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.697 40.8 80.2 22.8 [341]
2021 Ag/SiN:H/n"/p-c-Si/MoO,/Ag 0.622 38.8 79 19.19 [342]
2021 Ag/ITO/a-Si:H(n)/a-Si:H(i)/p-c-Si/a-Si:H(i)/MoOy/ITO/Ag 0.636 35.62 78.53 17.89 [343]
2021 Ag/ITO/a-Si:H(n)/a-Si:H(i)/n-c-Si/a-Si:H(i)/Cux0(p)/ITO/Ag 0.584 36.8 63.8 13.7 [344]
2021 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/Si0,/TiOy/Mg/Al 0.537 27.64 59.96 8.89 [345]

(continued on next page)
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Publication time Device structure Voc (V) Jsc (mA/em?) FF (%) PCE (%) Ref
2021 Ag/ITO/s-V20y/n-c-Si/Ti/Pd/Ag 0.556 33.86 57.14 10.75 [346]
2021 Ag/MoOy-CNT/n-c-Si/Ag 0.5 30.6 58 8.8 [347]
2021 Ag/ITO/n-ZnS/p-c-Si/WO3/Ag 0.529 33.55 61.17 10.86 [348]
2021 Ag/TCO/MoOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/TCO/Ag 0.7 39 75 22 [349]
2021 Ag/SiNy:H/n+/p-c-Si/Si0x/MoOy/SiOx/Ag 0.650 39.8 83.34 21.6 [350]
2021 Ag/ITO/a-Si:H(p)/a-Si:H(i)/p-c-Si/a-Si:H(i)/SnO,/Mg/Al 0.718 36.2 77.3 20.1 [351]
2022 Ag/Sn0O; NSs/SnO, TF/p-c-Si/Ag 0.312 20.28 48.84 3.09 [352]
2022 Al/Ag/Mo0O,/Ag/Mo0O,/n-Si/MoOy/Mg/Al 0.554 32.25 49.25 8.8 [353]
2022 Ag/ITO/MoOy/n-Si/Al 0.36 35.15 31.85 4.03 [354]
2022 Ag+Al/TCO/MoOy/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/TCO/Al 0.711 32.8 74.9 17.5 [355]
2022 Al/RDbF,/SiN,/TiOy/a-Si:H(i)/n-c-Si/a-Si:H(i)/MoO,/Ag 0.709 40.5 79.6 22.9 [356]
2022 Ag/ITO/Mo0,/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.708 37.38 74.59 19.75 [357]
2022 Au/rGO:Zn0O-NRs/ZnO/p-c-Si/Al 0.357 6.67 55.2 14.12 [358]
2022 Cu/MgF5/IWO/MoOy/PTB/c-Si(n)/a-Si:H(i)/a-Si:H(n)/IWO/Ag 0.721 40.2 82.18 23.83 [359]
2023 Ag/SiNy/n+/p-c-Si/MoO(3.5:Nb/Ag 0.615 39.68 75.344 18.37 [360]
2023 Ag/PEDOT:PSS/V,0,/n-c-Si 0.593 29.97 71.12 12.64 [361]
2023 Ag/ITO/Mo0O 3 ,/n-c-Si/Al/Ag 0.517 39.43 49.6 10.17 [362]
2023 Ag/ITO/Mo0,/MoS,-QDs/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.698 40.8 81.1 23 [363]
2023 Ag/SiNy/n+ layer/p-c-Si/V20s/Ag 0.597 39.66 72.84 17.23 [364]
2023 Ag+Al/AZO:Me/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(p)/ITO/Ag 0.693 39.8 71 19.58 [365]
2023 Au/MoOy + SnCl,@SWCNTs/n-c-Si/Au 0.26 108 29 8.20 [366]
2023 Ag/SiNy/n+/p-c-Si/Ta0s/Ag 0.612 39.64 76.24 18.47 [367]
2023 p-Si/SiOx(FGA)/L-MoO,/Ag 0.633 40.47 84.38 21.75 [368]
2023 Ag/ITO/AZO/Mo0,/a-Si:H(i)/n-c-Si 0.73 41.29 77.4 23.32 [369]
2024 Ag/SiNy:Al,03(p)/n-Si/BaOyFy/LiF/Ca:Al/Al 0.626 39.2 83.5 20.5 [370]

performance is still comparatively low[254,374].

Although metal halides as selective layers are promising in low
contact resistivity, their stability is an issue[22]. Many metal halides
lack stability in air and demand uninterrupted metallization processes
without vacuum interruption, restricting their viability for large-scale
production. Considering this, metal nitrides emerge as an alternative,
given their extensive application as copper diffusion barriers in micro-
electronics and as photoanodes for photo-electrochemical water split-
ting, boasting high stability and conductivity[387,388]. In 2018,
tantalum nitride (TaNy) deposited via ALD was reported for the first time
as the ETL[389]. As a result, their device achieved a PCE of 20.1 % with
moderate surface passivation and a low p.. In 2019, TiNy was first re-
ported as the ETL, offering a low p. of 16.4 mQecm? and a manageable
Jo of approximately 500 fA/cm?[378]. Combined with SiOy as the
passivation layer, their device achieved a PCE of 20 % with a simplified
fabrication process and reduced cost. Currently, the number of in-
vestigations into metal nitrides as selective layers is still low. Further
exploration of other transition metal nitrides, such as zirconium nitride
(ZrNy), hafnium nitride (HfNy), and molybdenum nitride (MoNy) could
prove to be promising avenues for research. Moreover, a few studies also
presented that metal carbonates including K»CO3, RbyCO3, Cs2COs,
CaCOs, SrCO3 and BaCOs, can be used as ETLs in solar cells[390-392].
Combined with VOy as the HTL, the proof-of-concept DASH solar cell
using CspCO3 as the ETL can achieve a PCE of 16.59 %, exhibiting a
promising prospect[286]. Furthermore, other metal compounds such as
CdS, ZnS, and GaP also show potential for application as the ETL
[393-395]. However, their device performance lags far behind.

As summarized in Table 3, the use of other metal compounds as the
dopant-free selective layer in HJT solar cells has garnered increasing
research interest in recent years. While a few of them have already
demonstrated considerable device performance, further systematic
studies are needed in this area. There is still a vast family of metal
compounds that can be explored to deliver better device performance in
HJT solar cells, such as ternary and quaternary species[396,397].

4.2.3. Organic materials

Organic molecules present another category of materials viable for
dopant-free selective layers in HJT solar cells. They offer simplicity in
fabrication and a wide array of options due to their versatility in
modifying functional groups[50]. Some organic materials exhibiting
electron selectivity are C60, PCBM, N2200, poly(ethylene oxide) (PEO),
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pyrrolidine tris-acid (CPTA), polyethylenimine (PEI), 8-hydroxyquinoli-
nolato lithium (Liq), and SAMs[417-422]. Sun and co-workers reported
PCEs of 13.7 % and 14.9 % for using PCBM and N2200 as the ETL in HJT
solar cells, respectively[423]. Their findings revealed that the interac-
tion between c-Si and organic materials plays a pivotal role in achieving
efficient charge collection. The molecular structure was observed to
influence the physical distance between silicon and organic materials.
The shorter distance between PCBM and c-Si facilitates a higher charge
transfer rate. This increased rate contributes to the formation of a more
robust rear surface field effect, thereby reducing surface recombination.
In another study, they further altered the N2200 molecule to F-N2200 by
replacing a hydrogen atom with a fluorine atom[424]. This substitution
led to a reduced physical distance and denser intermolecular stacking
between the organic materials and c-Si. Consequently, the solar cells
based on F-N2200 achieved a higher PCE compared to those based on
N2200. He and co-workers reported two narrow-bandgap conjugated
polymers, PTB7-NBr and PTB7-NSQOs, as ETLs with different functional
groups[425]. As a result, the electrical properties of PTB7-NBr resulted
in a lower contact resistance of 6.7 + 0.8 mQ-cm? compared to
PTB7-NSO3 (50 + 25 mQ~cm2), showing better device performance. Ye
and co-workers reported the use of poly(ethylene oxide) (PEO) as ETL
between the c-Si and electrodes. The presence of an interface dipole
generated by PEO expanded the built-in voltage (Vy;), leading to the
achievement of a PCE of 12.3 %[420]. It is noteworthy that, among
these organic ETLs, the device incorporating PEI achieved one of the
highest PCEs, reaching 19.5 %[421]. Furthermore, self-assembled
monolayers (SAMs) have emerged as promising alternatives to con-
ventional charge-selective contacts in the perovskite research commu-
nity[426]. Typically, a SAM comprises three components: an anchoring
group, a spacer (or bridge), and a functional group. The combination of
these constituents enables the customization of molecule design to align
with the energy levels, charge mobility, and wettability required for
optimal performance in photovoltaic devices[427,428]. SAMs organize
into ordered arrays that, based on their structure, exhibit a dipole
moment capable of modulating the work function of the substrate,
thereby facilitating charge extraction at the interfaces[429,430]. Most
recently, in a pioneering study, Stefaan and co-workers introduced
n-PACz SAMs, featuring carbazole and phosphonic acid groups, as po-
tential candidates for use as ETLs in HJT solar cells[431]. By introducing
2PACz between amorphous silicon-passivated c-Si and Al, they achieved
an electron-selective contact with a carrier lifetime of 4.4 ms, iV, of
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Table 3
Summary of device performance using other metal compounds as selective
contacts in chronological order.

Voc
W)

FF
(%)

PCE
(%)

Jsc Ref
(mA/

cm2)

Publication Device structure

time

2013 Al/AZO/ZnS/p-c-
Si/Al
Al/AZO/ZnS/p-c-
Si/Al
In/SnSe/n-c-Si/
Al
Al/MoS,/p-c-Si/
Cr/Ag
Ti/Ag/1TO/CdS/
n-c-Si/Al
ITO/a-Si:H(p)/p-
BaSi,/n-c-Si/Al
Ag/HAZO/n-
ZnS/p-c-Si/Al
Ag/ITO/BaSiy/n-
c-Si/Al
Ag/ITO/MoOy/n-
c-Si/a-Si:H(n)/
GaP/ITO/Ag
Ag/ITO/ZnS/p-c-
Si/WO3/Ag
Ag/ITO/a-Si:H
(p)/a-Si:H(i)/p-c-
Si/n"/GaP/ITO/
Ag
Ag/PEDOT:PSS/
n-c-Si/Ba(OH)y/
Ag/Al
Ag/ITO/CdS/n-c-
Si/MoOy/Ag
Ag/1TO/MoS,/a-
Si:H(i)/p-c-Si/a-
Si:H(@i)/pc-SiOx:H
(p)/ITO/Ag
Cr/Pd/Ag/Al,03/
SiNy/p*/n-c-Si/
TiN/Al/Ag
Ag/ITO/Mo0,/
MoS,/a-Si:H@i)/
n-c-Si/a-Si:H(i)/
pe-SiOx:H(n)/
ITO/Ag
Ag/SiN,/Al,03/
p'/n-c-Si/a-Si:H
(i)/LiAc/Ag
Ag/1TO/n-ZnS/p-
c-Si/WO3/Ag
Ag/ITO/a-Si:H
(p)/a-Si:H(i)/n-c-
Si/a-Si:H(i)/LiFy/
ITO/Ag
Au/Zn0O-SnOy/p-
¢-Si/CuSCN/Au
Ag/ITO/a-SiNx:
H/a-Si:H(i)/n-c-
Si/a-Si:H(i)/LiF/
Ti/Al
Ag/ITO/a-Si:H
(p)/a-Si:H(>i)/n-c-
Si/a-Si:H(i)/LiF/
Ti/Al
Ag/SiNy/MoS,/
SiOy/n-Si/p-c-Si/
Al
Ag/SiN,/a-Si:H
(n)/c-Si(p)/

AP 1y:Cul/Ag

0.319 29.11 39.31 3.66 [398]

2013 0.279 23.83 4.79 2.72 [394]

2013 0.425 17.23 44 6.44 [399]

2014 0.41 22.36 57.26 5.23 [400]

2016 0.308 13.92 42.7 1.83 [401]

2017 60 9.9 [402]

2017 0.517 31.05 55 8.83 [403]

2018 0.47 35.8 60 9.9 [404]

2018 0.598 34.3 69 14.1 [299]

2018 0.525 33.75 61.73  10.94 [301]

2018 0.616 31.3 61 11.8 [405]

2019 0.64 38.5 74 18.2 [406]

2019 0.483 35.45 71.62 12.29 [318]

2019 0.222 31.13 54.35 3.76 [407]

2020 0.607 38.7 80.1 18.7 [408]

2020 0.288  31.25 60.72 5.47 [409]

2021 0.644 39 79 19.8 [410]

2021 0.529 33.55 61.17 10.86 [348]

2021 0.69 33.32 74.62  17.16 [411]

2022 0.592 19.54 35.43 4.1 [412]

2022 0.717  41.83 78.68  23.61 [413]

2023 0.716 38.35 80.65  22.14 [414]

2023 0.602 35.43 67.89 [415]

2023 0.619 39.7 74.28  18.28 [416]
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729 mV and a contact resistivity of 65 mQ-cm?, resulting in a PCE of
21.4 % with a V. of 725 mV and a FF of 79.2 %.0On the other hand,
organic materials such as PEDOT:PSS, P3HT, and TAPC have been
studied as HTLs, with PEDOT:PSS being the most extensively researched
[95]. As shown in Fig. 5e, PEDOT:PSS is a hole-conducting polymer
wherein the conductive constituents of PEDOT are effectively dispersed
within the water-soluble insulating polymer matrix of PSS[432]. The
PEDOT molecule, with a molecular weight (MW) of approximately
1-2.5 kDa, is hydrophobic, whereas the PSS molecule (MW ~400 kDa)
is hydrophilic. These molecules adhere to each other through Coulomb
attraction, forming PEDOT:PSS molecules[255]. As HTL in HJT solar
cells, the conductivity of PEDOT:PSS significantly influences the device
performance. The pristine PEDOT:PSS solution exhibits a conductivity
below 1 S em ™}, which can be enhanced to approximately 1000 S cm ™
through the addition of cosolvents such as dimethyl sulfoxide (DMSO) or
ethylene glycol (EG). Furthermore, secondary treatment methods can
further increase the conductivity of PEDOT:PSS to several thousand S
em™! by separating the conductive PEDOT from the insulating PSS
component[433-436]. For instance, Shirai and co-workers demon-
strated that the addition of p-toluenesulfonic acid to PEDOT:PSS pro-
motes phase separation between PEDOT and PSS, leading to enhanced
conductivity of the PEDOT:PSS film[433]. Consequently, the PCE of HJT
solar cells improved from 12 % to 14 %. Leung and co-workers inte-
grated silver nanowires into the PEDOT:PSS film, which significantly
reduced the sheet resistance of the film and boosted the PCE of the HJT
solar cell to 15 %[437]. In addition to the conductivity, the WF of
PEDOT:PSS also affects the device performance of HJT solar cells. As
reported, there are typically two methods to enhance the WF of PEDOT:
PSS films, including modifying the PEDOT:PSS solution by incorporating
foreign materials and depositing high-WF materials onto the PEDOT:PSS
film as bilayer[285,438-440]. Sun and co-workers added perfluorinated
ionomer (PFI) into the PEDOT:PSS film, which increased the WF of the
film by 0.2 eV, resulting in a PCE enhancement by about 20 %[441]. In
another investigation, they found that the deposition of an organic
molecule, 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile
(HAT-CN), onto PEDOT:PSS films increased the work function of
PEDOT:PSS from 5.0 eV to 5.4 eV. [G7-361] Sturm and co-workers
inserted P3HT film between Si and PEDOT:PSS. This integration
served to impede the transfer of electrons to the PEDOT:PSS film,
effectively reducing the dark current[442]. On the other hand, Yu and
co-workers introduced an organic compound known as 1,1-bis[(di-4-to-
lylamino)phenyl]cyclohexane (TAPC) between Si and PEDOT:PSS. This
resulted in an enhancement of carrier lifetime, leading to an improved
PCE of 13 %[443]. Likewise, the insertion of an electron-blocking ma-
terial, N,N’-bis(3-methylphenyl)-N,N’-diphenylbenzidine, between Si
and PEDOT:PSS demonstrated similar effects to those observed with
P3HT or TAPC[444]. To date, the highest reported PCE for HJT solar
cells based on PEDOT:PSS is 20.6 % by Zielke and co-workers, attributed
to the use of modified PEDOT:PSS dispersion and optimal pre-treated
c-Si surfaces[445].

As summarized in Table 4, significant advancements have been
achieved in selective layers based on organic materials for HJT solar
cells. So far, there is a disagreement about the balance between so-
phisticated methods like atomic layer deposition (ALD) for creating
high-quality passivation layers versus simpler, more scalable techniques
(e.g., sputtering or chemical vapor deposition) that might be less
effective but easier for mass production. Given that many organic se-
lective layers can be produced using straightforward solution-based or
evaporation techniques, this suggests a cost-effective pathway for HJT
solar cell fabrication. However, the issue of device stability remains
unresolved. According to current research findings, degradation can be
attributed to the inherent instability of organic materials and contact
interfaces. Unlike conventional Si solar cells, which typically offer a
twenty-five-year guarantee in commercial production, organic materials
are more susceptible to environmental factors such as heat, light,
moisture, and oxygen. For instance, PEDOT:PSS films are notably
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Table 4
Summary of device performance using organic materials as selective contacts in chronological order.

Publication time Device structure Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Ref
2008 Au/DOPNA/p-c-Si/Al 0.29 4.83 33 5.74 [447]
2012 Ag/PEDOT:PSS/P3HT/n-c-Si/Al 0.4 30 48 6.3 [448]
2012 Ag/PEDOT:PSS+Zonly/n-c-Si/Al 0.541 29.2 71.8 11.34 [449]
2012 Ag/GO/PEDOT:PSS/n-c-Si/Al 0.52 27.99 0.63 9.27 [450]
2012 Ag/PEDOT:PSS:GO/n-c-Si/Al 0.548 28.9 67.5 10.7 [451]
2013 Ag/PEDOT:PSS:MeOH:EG/n-c-Si/Al 0.548 28.79 71.1 11.23 [452]
2013 Ag/PEDOT:PSS/TAPC/n-c-Si/Al 0.54 34.81 67.08 12.54 [453]
2014 SiN,/Al/Al;,03/n" /n-c-Si/SiO,/PEDOT:PSS/Al 0.668 41.1 83 22.8 [454]
2014 Ag/Mo03/PEDOT:PSS/n-c-Si/Liq/Al 0.63 29.2 74.9 13.8 [285]
2014 Ag/PEDOT:PSS/SiOx/n-c-Si/Ti/Ag 0.5 33.74 64.73 11 [455]
2015 GO/AgNWs/PEDOT:PSS/n-c-Si/Al 0.601 28.4 78.4 13.3 [456]
2015 Ag/PEDOT:PSS/n-c-Si/n"/Ag 0.564 32.1 75.2 13.63 [457]
2015 TiO,/Ag/PEDOT:PSS/n-c-Si/InGa 0.62 34.3 73 15.5 [433]
2016 Ag/PEDOT:PSS/n-c-Si/PFN/Al 0.582 29.57 77.56 13.35 [458]
2016 Al/Cgo/p-c-Si/Al 0.5 25.09 67 8.4 [459]
2016 MoO3/Ag/PEDOT:PSS/SiOx/n-c-Si/a-Si:H(i)/a-Si:H(n) /Al 0.532 34.9 66.97 12.43 [460]
2016 Ag/PEDOT:PSS/n-c-Si/InGa 0.53 35.6 67 12.5 [461]
2016 Ag/PEDOT:PSS/TAPC/p-PFO/n-c-Si/Al 0.553 32.41 70.13 12.56 [462]
2016 Ag/GOPs/PEDOT:PSS/n-c-Si/Al 0.64 30.2 72.8 14.1 [463]
2016 Ag/PEDOT:PSS/n-c-Si/PEO/Al 0.563 28.65 76.22 12.29 [420]
2016 Ag/Nafion/PEDOT:PSS/n-c-Si/InGa 0.604 32.7 70.6 14 [464]
2016 Cu/PEDOT:PSS/n-c-Si/Al 0.49 34 59 9.1 [465]
2016 Ag/PEDOT:PSS/n-c-Si/Al 0.58 28.57 69.2 11.46 [466]
2016 Ag/PEDOT:PSS+Au NP/n-c-Si/Al 0.622 27.7 74.6 12.85 [467]
2016 Glass/ITO/PEDOT:PSS/LPD-TiO5/n-c-Si/Al 0.63 34.15 65 14.7 [468]
2016 Cul/Ag/PEDOT:PSS/SiOy/n-c-Si/InGa 0.656 28 78.1 14.3 [373]
2016 Ag/PEDOT:PSS/n-c-Si/a-Si:H/a-SiC:H/Ti/Al 0.56 30.54 49.7 8.5 [469]
2016 Au/Graphene/GQDs/SiO2/n-c-Si/InGa 0.58 33.93 63 12.35 [470]
2016 Ag/PEDOT:PSS/n-c-Si/n* /Al 0.472 33.37 56.52 9.37 [471]
2017 Ag/PEDOT:PSS/n-c-Si/a-Si:H(i)/a-Si:H(n)/Al 0.634 35.4 72.22 16.21 [472]
2017 Ag/PEDOT:PSS/n-c-Si/TiOx/Al 0.643 30.7 72.4 14.3 [288]
2017 Ag/DEP/PEDOT:PSS/n-c-Si/a-Si:H(i)/a-Si:H(n) /Al 0.634 36.5 70 16.2 [473]
2017 Ag/PEDOT:PSS/n-c-Si/F-N2200/Al 0.635 31.1 73.3 14.5 [424]
2017 Ag/PEDOT:PSS/n-c-Si/PCBM/Al 0.646 31.37 74.25 14.9 [423]
2017 Ag/PEDOT:PSS-CNPs/n-c-Si/Al 0.614 26.34 73.93 11.95 [474]
2017 Ag/PEDOT:PSS/P(VDEF-TrFE)/n-c-Si/Ti/Au 0.583 30.8 65.4 11.73 [475]
2017 Ag/PEDOT:PSS/SiOy/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ti/Ag 0.663 31.9 70 14.8 [476]
2017 Ag/PEDOT:PSS/n-c-Si/TiO2/Al 0.62 31 75.96 14.6 [294]
2017 Cul/Ag/PEDOT:PSS/n-c-Si/PTB7-NBr/Al 0.638 32.8 76.5 16 [425]
2018 Ag/AgNW/PEDOT:PSS/n-c-Si/Al 0.56 27.07 72.15 11.07 [477]
2018 Ag/SiNx/a-Si:H(n)/p-c-Si/PEDOT:PSS/Ag 0.656 38.7 79 20.2 [478]
2018 Ag/PEDOT:PSS/n-c-Si/AZO/Al 0.641 27.6 78 13.6 [298]
2018 Ag/PEDOT:PSS/n-c-Si/Al 0.628 28.9 74.5 13.6 [479]
2018 Ag/PEDOT:PSS/n-c-Si/SiOx/Mg/Al 0.61 33.4 73.5 15 [480]
2018 Ag/PEDOT:PSS/SiOy/n-c-Si/InGa 0.607 33.72 65.01 13.31 [481]
2018 Ag/HC-PEDOT:PSS/HW-PEDOT:PSS/n-c-Si/Ga-In 0.64 26.27 75.5 12.69 [482]
2017 TAPC/Ag/PEDOT:PSS/n-c-Si/Ag/Ba(OH),/Al 0.623 27.4 73.3 12.5 [483]
2018 Au/MnTPPCl/n-c-Si/Al 0.438 6.28 33.6 4.62 [484]
2018 Ag/HC-PEDOT:PSS/HA-PEDOT:PSS/n-c-Si/CPTA/Al 0.632 34.7 76.3 16.73 [417]
2018 Ag/AgNW/PEDOT:PSS/SiOy/n-c-Si/Al 0.622 31.05 78 15.1 [437]
2018 Ag/PEDOT:PSS/n-c-Si/QH/Al 0.635 27.16 77.07 13.29 [485]
2018 Ag/PEDOT:PSS/n-c-Si/rubrene:DMSO/Ag 0.609 28.2 69.1 11.9 [486]
2018 Ag/PEDOT:PSS/n-c-Si/SnO,/Ag 0.593 33.16 72 14.16 [309]
2018 Ag/PEDOT:PSS/n-c-Si/a-Si:H(i)/Li-ZnO/Al 0.623 33.58 72.38 15.14 [311]
2019 Ag/IWO/a-Si:H(n)/a-Si:H(i)/n-c-Si/PEDOT:PSS/Ag 0.633 36.6 70.2 16.3 [487]
2019 Ag/PEDOT:PSS/n-c-Si/MgOy/Al 0.623 33.8 73.9 15.5 [317]
2019 Ag/PEDOT:PSS/n-c-Si/TiO4/LiF/Al 0.626 31.9 75.6 15.1 [316]
2019 Ag/PEDOT:PSS/n-c-Si/SiOy/EDTA-SnOy/Ag 0.562 28.8 71.2 11.52 [324]
2019 Al/SiNy/AlOy/p-c-Si/PEDOT:PSS/Ag 0.66 38.5 80 20.4 [488]
2020 Ag/PEDOT:PSS/n-c-Si/TiOo/Ag/Al 0.616 28.5 70.9 13.08 [332]
2020 Ag/SiOy/F-SWCNT/n-c-Si/InGa 0.599 31.2 70.9 13.3 [489]
2020 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/b-PEI/Al 0.72 37 72.9 19.4 [418]
2020 Ag/PEDOT:PSS/n-c-Si/PCBM/Al 0.618 31.75 66.49 13.12 [490]
2020 Al/Graphene/nc-SiOx(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/nc-SiOx(n)/AZO /Al 0.612 25.3 55.8 8.65 [491]
2020 Ag/PEDOT:PSS-MoOy/n-c-Si/PCg1BM/Al 0.627 32.41 68.01 13.82 [492]
2020 Ag/PEDOT:PSS-CNT/n-c-Si/Al 0.589 25.3 60.79 9.05 [493]
2021 Ag/PEDOT:PSS/SiNWs/n-c-Si/PCBM/Mg/Al 0.65 34.8 80.1 18.12 [494]
2021 Ag/PEDOT:PSS+ITO-NPs/n-c-Si/InGa 0.589 33.66 60.54 12.01 [495]
2021 Au/TTBTP/n-c-Si/Al 0.68 8.06 43.3 2.38 [496]
2021 Ag/PEDOT:PSS+GOPs/n-c-Si/TiN/Al 0.66 33 69.03 15.01 [497]
2021 Ag/PEDOT:PSS/n-c-Si/Al 0.521 321 66.2 11.1 [498]
2021 Ag/PEDOT:PSS/MWCNTs&PDA/n-c-Si/PCgq BM/Al 0.637 34.76 56.41 12.49 [499]
2021 Ag/GO/PEDOT:PSS/n-c-Si/In:Ga 0.648 28.89 73.5 13.76 [500]
2022 Ag/HQ-PEDOT:PSS/BQ/n-c-Si/LiF/Al 0.618 27.7 61.8 10.6 [501]

(continued on next page)
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Publication time Device structure Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Ref
2021 Au/PEDOT:PSS/n-c-Si/In-Ga 0.515 24.16 44.12 5.49 [502]
2021 Ag/PEDOT:PSS/n-Si/PCqs1BM/Al 0.645 32.81 63.56 13.44 [503]
2022 Ag/PEDOT:(PSS+IBTEO)/n-c-SiNWs/PCBM/Mg/Al 0.649 34.8 80.5 18.2 [504]
2022 Ag/(P/Se-WO,):(PEDOT:PSS)/n-c-Si/PCgBM/Al 0.633 33.51 6564 13.64 [505]
2022 Ag/ITO/a-Si:H(n)/a-Si:H(i)/n-c-Si/GO:Nafion/Ag 0.670 40 80.6 21.6 [506]
2022 Al/MoSy/h-BN/p-c-Si/Ag 0.61 32.2 62 11.83 [507]
2022 Ag/ITO/a-Si:H(n)/a-Si:H(i)/n-c-Si/MXene:Nafion/eAg 0.556 38.64 66.18 14.21 [508]
2023 Ag/doped-PEDOT:PSS/n-c-Si/Al 0.64 33.88 64.33 14.46 [509]
2023 Ag/TsOH-SWCNT/SiOy/n-c-Si/In/Ga 0.623 35.5 80 17.7 [510]
2023 Ag/ITO/V30s/n-c-Si/PAMAM/Al 0.6 31.7 76.2 14.5 [511]
2023 Ag/PEDOT:PSS/V,0,/n-c-Si 0.593 29.97 71.12 12.64 [361]
2023 Ag/PEDOT:PSS/n-c-Si/Al 0.497 7.71 67.8 5.53 [512]
2023 Ag/PEDOT:PSS/p-c-Si/Zn0O/Ag 0.56 25.99 67.1 9.77 [513]
2023 Ag/PEDOT:PSS/SiOy/n-c-Si/In:Ga 0.522 28.75 69.45 10.42 [514]
2023 Ag/PEDOT:PSS/PEDOT:PSS-Nafion/n-c-Si/In:Ga 0.69 29.65 70.77 12.33 [515]
2023 Ag/PEDOT:PSS/n-c-Si/In:Ga 0.556 24.26 65.87 8.89 [516]
2023 Al/2PACz/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(p)/ITO/Ag grid 0.725 37.3 79.2 21.4 [431]
2024 Ag/PEDOT:PSS-Nafion/PEDOT:PSS-TX/n-Si/SiO,/n " -poly-Si/Ag 0.636 31.1 69.1 13.7 [517]
2024 Ag/PEDOT:PSS/n-Si/In:Ga 0.541 3213 61.96 10.78 [518]

vulnerable to degradation from UV light and oxygen exposure[446].
When exposed to oxygen, sulfur atoms within the thiophene rings
transform into insulating sulfoxide and sulfone structures. This oxida-
tion process is expedited by UV light, exacerbating the degradation. As a
result, the increased resistivity of the film imposes limitations on device
efficiency. Further research dedicated to investigating the stability of
organic materials in this domain is warranted.

5. Conclusion

In conclusion, HJT solar cells represent a promising avenue for
overcoming the limitations of homojunction SSCs, such as high carrier
recombination at the rear surface and the need for heavy bulk doping, to
get us closer to the fundamental efficiency limit of silicon solar cells. By
incorporating passivating selective contacts on both sides of the c-Si
wafer, HJT technology offers improved surface passivation and reduced
recombination rates, leading to higher V,. and enhanced PCE. Recent
advancements in passivating selective contacts for HJT SSCs have shown
remarkable progress, as evidenced by the increasing number of publi-
cations and the steady improvement in PCE. Innovative approaches,
such as the a-SiOx:H(i) passivation layers, DASH structure, and the
integration of SAMs, have broadened the scope of materials available for
passivating selective contacts. The comprehensive survey presented in
this paper provides valuable insights into the fundamental mechanisms,
material modifications, and performance evaluations of passivating se-
lective contacts for HJT SSCs. By systematically exploring the evolution
of selective layers and highlighting recent advancements, this study
contributes to the ongoing development of HJT technology.

Herein, in the context of passivating selective contacts in HJT solar
cells, we also outline current challenges in the field and possible di-
rections for future research:

1) Addressing the instability of passivating selective contacts and their
compatibility with adjacent layers is crucial for advancing solar cell
technology. This issue often arises due to interfacial reactions or
processing constraints that can compromise device performance and
longevity. For newly developed selective layers, such as those based
on TMOs and organic materials, while they show promise for high
PCE, there is a pressing need for comprehensive evaluations of their
long-term stability. These materials can be sensitive to environ-
mental factors, which can lead to degradation over time. To mitigate
the risk of air contamination, which can adversely affect these sen-
sitive materials, it is essential to employ thin-film deposition tech-
niques that operate in controlled, inert environments. Moreover,
incorporating interlayers that have demonstrated both thermody-
namic stability and suitable band alignment can help address
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compatibility issues. These interlayers act as buffers, preventing
undesirable reactions between the passivating layers and adjacent
layers. They also ensure proper charge transport and minimize en-
ergy losses at interfaces [50].
There remains a critical need to develop passivating selective con-
tacts with optimized electronic properties to enhance the perfor-
mance of solar cells. Specifically, the challenge lies in achieving
sufficiently low EA for the electron-selective contact and high WF for
the hole-selective contact. These properties are essential for ensuring
efficient charge separation and collection at the respective elec-
trodes. To address these challenges, advanced doping strategies are
one promising approach. Doping can modify the electronic proper-
ties of the materials, potentially lowering the EA for electron-
selective contacts or increasing the WF for hole-selective contacts.
This involves introducing dopants that can fine-tune the energy
levels within the material to better match the requirements for effi-
cient charge extraction. Another approach is the chemical potential
tuning of relevant elements, such as oxygen. By adjusting the con-
centration of these elements or their chemical states within the
contact materials, it is possible to optimize the electronic band
structure and improve the contact properties. This strategy may
involve sophisticated techniques such as controlled oxidation or
alloying, which require further development to fully realize their
potential. In addition to these strategies, the exploration of new
materials is crucial. Ternary and quaternary metal compounds offer a
rich field of possibilities, as their complex compositions can provide
tailored band alignments and high electrical conductivities. For
example, materials combining multiple metal elements may exhibit
synergistic effects that enhance their electronic properties beyond
those of binary compounds. To fully leverage these advanced mate-
rials, more in-depth investigation is needed. This includes studying
their fundamental properties, processing techniques, and in-
teractions with other layers in the solar cell structure. Comprehen-
sive research into these materials could lead to the discovery of new
candidates that offer improved performance and stability. Overall,
continued development in these areas—advanced doping tech-
niques, chemical potential tuning, and exploration of complex metal
compounds—will be essential for achieving optimal passivating se-
lective contacts. These advancements will contribute to higher effi-
ciency and more reliable solar cell technologies, addressing some of
the current limitations in the field.

3) A thorough understanding of the charge transport mechanism in
passivating selective contacts is still lacking, which limits the opti-
mization of these materials for high-performance solar cells. For
example, selective materials such as lithium fluoride (LiFx) are
known for their promising passivating properties. However, the
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mechanism by which carriers traverse through such materi-
als—especially when the material thickness exceeds 10 nm—is not
yet fully understood[381]. In particular, the role of tunneling in
these processes remains unclear and requires more detailed investi-
gation. The current theoretical models, including those that involve
tunneling, often fall short of explaining how carriers can effectively
move through thicker layers of these materials. Tunneling mecha-
nisms, while useful for very thin layers, may not fully account for the
observed behavior in thicker films. This discrepancy suggests that
additional factors or mechanisms might be at play that have not been
fully accounted for in existing models. Therefore, it is crucial to
conduct a meticulous examination of carrier transport mechanisms
under various conditions to bridge this knowledge gap. This includes
studying how different factors, such as material thickness, temper-
ature, and applied electric fields, influence carrier movement.
Advanced experimental techniques, such as time-resolved spectros-
copy or depth-resolved measurements, could provide insights into
the dynamics of carrier transport in these materials. By gaining a
deeper understanding of these mechanisms, researchers can better
exploit the intrinsic properties of passivating selective materials. This
knowledge will enable the design of innovative contact structures
that optimize carrier selectivity and enhance overall device perfor-
mance. For instance, insights into how carriers navigate through
different thicknesses of passivating layers could lead to the devel-
opment of multilayer structures that improve charge extraction ef-
ficiency and minimize losses. In summary, advancing our
comprehension of charge transport mechanisms is essential for
pushing the boundaries of passivating selective contact technology.
By exploring new theoretical and experimental approaches, we can
unlock the full potential of these materials.

Given these ongoing advancements, the potential for HJT solar cells
to surpass a PCE of 28 % is within reach. Continued research and
development in passivating selective contacts will be instrumental in
achieving this milestone. By addressing current limitations and
leveraging new technologies, researchers and manufacturers are poised
to significantly improve the efficiency and performance of HJT solar
cells, making them a leading choice for high-performance photovoltaic
applications.
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