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A B S T R A C T

Photovoltaic (PV) technology, particularly silicon solar cells (SSCs), has emerged as a key player in meeting this 
demand due to its mature technology, prolonged stability, non-toxicity, and material abundance. Heterojunction 
(HJT) solar cells have shown significant promise by eliminating dopant-diffusion processes and separating c-Si 
wafers from metal contacts. In recent years, the notable enhancement in the record PCE of SSCs primarily hinges 
on advancements in HJT technology, incorporating sophisticated passivating selective contacts. This review 
explores the evolution and recent progress of passivating selective contacts in HJT solar cells, examining doped 
silicon-based materials, metal compounds, and organic materials. Despite dopant-free contacts still lagging in 
efficiency, their potential for high fill factor (FF) values suggests viable pathways for future research. This study 
aims to provide a comprehensive overview, highlighting key advancements, challenges, and prospects in the 
ongoing development of HJT technology for higher performance, enhanced stability, and reduced costs.

1. Introduction

The need for energy is unequivocal for human sustenance[1]. Given 
the anticipated twofold increase in global energy consumption by the 
midcentury due to population and economic expansion, conserving 
natural resources becomes paramount[2,3]. Photovoltaic (PV) technol
ogy, which harnesses solar energy, is seen as a key means of meeting the 
escalating demand for electricity while reducing the environmental 
impact of resource depletion associated with fossil energy technologies
[4]. According to The International Technology Roadmap for Photo
voltaics (ITRPV), the solar PV market exhibited notable expansion, 
reaching a record 502 gigawatt (GW) in shipments in 2023[5]. This 
means we are now truly in the terawatt (TW) era of PV. Silicon solar cells 
(SSCs) are the predominant PV technology, commanding over 97 % of 
the market share[5]. Besides technology’s maturity, prolonged stability, 
non-toxicity, and the abundance of materials, this market dominance is 
mainly attributed to their continuously increased power conversion ef
ficiency (PCE) and reduced levelized cost of electricity (LCOE)[6,7].

Presently, industrial SSCs are dominated by the homojunction crys
talline silicon (c-Si) technology, encompassing aluminum back surface 
field (Al-BSF) cells, passivated emitter and rear contact cells (PERC), 
tunnel oxide passivated contact cells (TOPCon), heterojunction with 

intrinsic thin layer cells (HJT or HIT), back contact cells (BC), and so on
[8–10]. Thanks to its relatively simple structure, low manufacturing cost 
and excellent long-term stability, the Al-BSF technology has played a 
pivotal role in the success of the silicon PV industry during the first 
fifteen years of the new millennium[5]. A typical p-type Al-BSF cell 
comprises a phosphorus-doped n+ emitter and an Al-doped p+ BSF, 
formed through a firing process following the screen-printing of Al paste
[11]. Nevertheless, the PCE of Al-BSF cells (≤ 20 %) is primarily con
strained by the high carrier recombination velocity at the rear surface of 
the c-Si[12]. To mitigate recombination losses at the rear surface, the 
PERC technology incorporates a passivation dielectric layer between the 
rear side of c-Si and Al contacts[13]. A record-breaking PCE of 25.0 % 
was attained on a lab-scale PERC cell in 1999, employing thermally 
grown silicon dioxide (SiO2) passivation on both sides[14]. From 2015 
onwards, the market has seen a shift with PERC cell technology over
taking Al-BSF and maintaining its dominance[5]. However, further 
improving the PCE of the PERC is constrained by severe carrier recom
bination losses at the metal-silicon contact regions with an induced 
significant loss in device open-circuit voltage (Voc)[15]. In this context, a 
promising route on PERC is the Tunnel Oxide Passivated Contact 
(TOPCon) solar cells, which replace the local metal contact for electron 
collection with a stack of SiOx/doped poly-Si layer, reducing 
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recombination current density[16,17]. The merit of this configuration 
lies in the efficient extraction of electrons while simultaneously 
providing surface passivation[18]. This concept is referred to as 
passivating selective contact.

For homojunction SSCs, the need for heavy doping in bulk induces 
Auger recombination, bandgap narrowing, and free carrier absorption in 
c-Si, limiting the device’s overall performance[19,20]. In this regard, 
HJT SSCs are the most promising solution that eliminates the 
dopant-diffusion process and entirely separates the c-Si wafer from the 
metal contacts[21]. In the HJT structure, passivating selective contacts 
are applied on both sides of the c-Si wafer to form a sandwich structure
[22]. Early in 1974, Fuhs and co-workers elucidated the heterojunction 
concept, presenting a structure comprising hydrogenated amorphous 
silicon (a-Si:H) on c-Si[23]. Later in the 1990s, Sanyo pioneered the 
development of the first HJT SSC[24], swiftly attaining a PCE surpassing 
21 % by 2005[25]. In a conventional HJT SSC, the dangling bonds on the 
surface of c-Si are effectively passivated by a-Si:H, which possesses a 
larger bandgap while being almost identical to c-Si at the nanoscale level
[26]. Beyond fostering strong covalent bonds between a-Si and c-Si, the 
hydrogen atoms in a-Si:H play a crucial role in terminating any residual 
dangling bonds, thereby enhancing the overall passivation quality[27]. 
In contrast to homojunction SSCs, HJT SSCs typically exhibit signifi
cantly lower recombination rates, leading to high Voc values[28]. 
Additionally, a-Si:H can be doped, whether n-type or p-type, and pro
vide carrier selectivity in a similar way as doped poly or single crystal
line silicon[22]. This selective layer enhances carrier extraction by 
establishing a unidirectional pathway for either electrons or holes[29].

Over the past decade, the notable enhancement in the record PCE of 
SSCs primarily hinges on advancements in HJT technology, incorpo
rating sophisticated passivating selective contacts[31]. As of November 
2022, the certified highest PCE for single-junction SSCs has achieved 
26.81 %, utilizing the HJT structure developed by LONGi. Soon enough, 
they improved the PCE to 27.30 % by combining the HJT with an 
interdigitated back-contact (IBC) structure, also known as hetero
junction back-contact (HBC) solar cells[32]. Attributed to the superior 
surface passivation quality and the effective extraction of charged car
riers, HJT SSCs have garnered significant research attention, leading to a 
substantial increase in publication numbers over the past two decades, 
as shown in Fig. 1a. Recently, Long and coworkers proposed that the 
practical PCE up limit of HJT SSCs can be as high as 28.5 %, which in
dicates that there is still room for researchers to explore and enhance the 
efficiency of HJT SSCs[33–35]. In recent years, great advances have 
been made in terms of the scope and depth of the passivating selective 
contacts in HJT SSCs[36]. In addition to conventional a-Si:H(i)/a-Si:H(n 
or p) stacks, many advanced passivating selective contacts have been 
devised for this purpose, such as the a-SiOx(i)/a-SiOx(n) stacks and 
dopant-free asymmetric heterocontacts (DASH). Therefore, a progress 
review screening and discussion of these recent advancements in a 
broader context is believed to be beneficial for the ongoing development 
of HJT technology, aiming for higher performance, enhanced stability, 
and reduced costs.

Recent progress in selective passivating contacts for HJT SSCs clas
sified by doped silicon-based materials, metal compounds, and organic 
materials has been summarized in Fig. 1b-e. It is clear to see that con
tacts based on doped silicon-based materials exhibit exceptional elec
trical properties, achieving high FF and Voc values that are approaching 
their fundamental limits. The most outstanding electrical performance 
observed for passivating selective contacts is still based on stacks with 
doped amorphous silicon-based materials, while they suffer from optical 
losses. The integration of HJT and IBC reports the highest efficiency, 
which exhibits both superior electrical properties and optical advan
tages due to the absence of front-side metal contacting that shades part 
of the front surface of the solar cell. It is also worth mentioning that the 
electrical performance of passivating selective contacts based on 
dopant-free compounds is not yet on par with that of doped silicon- 
based materials contacts with only efficiencies of just over 23 % 

reported to date. This discrepancy is largely attributed to the more 
advanced state of silicon-based contacts in terms of the learning curve, 
benefiting from the processing of billions of cells and enabling more 
accurate optimization through statistical analysis while dopant-free 
contacts are only investigated at the lab scale by research institutions
[30]. However, it’s noteworthy that FF values exceeding 80 % have been 
achieved for all families of dopant-free contacts, suggesting efficient 
charge-carrier extraction is feasible. Yet, for most metal 
compound-based contacts, the gap to the FF limit appears notably 
larger. On the other hand, metal compound-based contacts that achieve 
Voc values comparable to the best doped-silicon contacts do so by relying 
on dedicated a-Si:H passivation layers. This underscores that while 
certain metal compound materials can establish strong asymmetry in 
carrier conductivity, they lag in terms of surface passivation. Moreover, 
in comparison to doped-silicon materials and metal compounds, 
research on passivating selective contacts based on organic materials 
lags, with the maximum PCE only reaching 21 %. As shown in Fig. 1e, 
due to their excellent transparency, metal oxides are among the most 
promising candidates to replace doped silicon materials as passivating 
selective contacts. However, their passivation quality and selectivity still 
need improvement, ideally without the use of silicon-based passivation 
layers.

This study systematically explores passivating selective contacts for 
HJT SSCs, providing a comprehensive survey of research conducted over 
the past decade. Section 2 focuses on the fundamental mechanisms and 
theory of passivating selective contacts. Subsequently, we discuss the 
evolution of passivation layers for HJT SSCs, emphasizing material 
modifications. Then, we evaluate various selective layers, categorized 
into doped silicon-based materials and dopant-free materials, including 
transition metal oxides, other metal compounds, and organic materials. 
Finally, we present our perspectives and highlight challenges within this 
research domain.

2. Mechanisms and theories of passivating selective contacts

2.1. Surface passivation

Because of an abrupt disruption in the periodicity of the silicon 
crystal, a significant quantity of dangling bonds (DB) are typically pre
sent at the silicon interface, leading to a high density of surface states
[37]. These states exhibit distributed energy levels throughout the en
ergy bandgap, which serve as highly dynamic centers for electronic 
recombination, capturing excess electrons and holes[38]. They are 
characterized by their density Dit and capture cross-sections σn or σp. In 
situations of non-equilibrium, the driving force for recombination stems 
from the charge imbalance. The recombination rate is influenced by Dit, 
the surface density of electrons (ns) and holes (ps), and the likelihood, 
per unit time, that an electron or hole will be captured by a specific state. 
The capture probability relies on σn or p and the thermal velocity (vth) of 
the charge carriers. The semiconductor surface’s recombination activity 
can quantified by the so-called surface recombination velocities (often 
referred as S), where Sn0 = vthDitσn, and Sp0 = vthDitσp, corresponding to 
electrons and holes, respectively. Here, vth is approximately 107 cm/s 
and sets an upper limit for the S values. The capture cross-section ratio of 
mid-gap defects is notably asymmetric, with a generally higher affinity 
for electrons. To simplify, Dit can be approximated as states at a single 
energy Nit at the mid-gap, given that recombination efficiency is most 
significant in the middle of the bandgap. During illumination, the net 
recombination at the surface is defined by a parameter known as the 
effective surface recombination velocity, Seff , which can be calculated by 
using the equation below[39,40]: 

Seff =
Us

Δ n(x = d)
(1) 
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Fig. 1. a) The progress in the record power conversion efficiency (PCE) of heterojunction (HJT) solar cells with accumulated publication numbers during the year 
2000–2024. The data on the number of publications is taken from Scopus (www.scopus.com). The progress in selective passivating contacts, classified by doped 
silicon-based materials, metal compounds and organic materials, for HJT SSCs in terms of a) Voc, b)Jsc, and c)FF values (data extracted from Tables 1–4). e) A 
summary of representative passivating selective contacts reported so far and their corresponding device performance. The contour plot illustrates the ideal cell 
efficiency, assuming a Jsc of 43.31 mA/cm2, which corresponds to the theoretical Jsc of a 110 μm-thick c-Si solar cell and the star symbol marks this ideal solar cell 
with an efficiency of 29.43 %. Reproduced with permission from [30] Copyright (2022) John Wiley and Sons.
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Us =
vthNit(nsps − n2

i )
ns+n1

σp
+ (

ps+p1
σn

)
(2) 

where Us represents the surface recombination rate, described by the 
extended Shockley-Read-Hall (SRH) recombination equation under non- 
equilibrium conditions[41]. Δn refers to the excess minority carrier 
concentration at a virtual surface (located at the edge of the space charge 
region, x = d, formed due to surface charge) rather than at the physical 
silicon surface (x = 0). Here, ni is the intrinsic carrier concentration in 
Si. Additionally, n1 and p1 denote the SRH densities of electrons and 
holes, respectively, when the energy of the trap level coincides with the 
Fermi level[42].

There are essentially two methods to decrease Seff . The initial 
approach involves reducing Nit through the deposition of a suitable 
surface layer with a wider bandgap. Additionally, the bonding nature at 
the interface can influence the capture cross-section ratio of surface 
states. This refinement of interface properties is commonly referred to as 
chemical passivation[43]. Achieving surface chemical passivation in
volves many methods, such as immersing the wafer in a polar solution 
and depositing passivation layers to reduce interfacial states or satu
rating silicon dangling bonds. Usually, many approaches are employed 
simultaneously, ensuring ample surface chemical passivation to fully 
saturate the dangling bonds. This makes it an optimal method to prevent 
carrier recombination for both electrons and holes. Secondly, given that 
each defect necessitates the presence of both electrons and holes 
concurrently, the recombination rate reaches its peak when ns = ps for 
asymmetric capture cross-sections. Consequently, minimizing the sur
face concentration of one of the charge-carrier types substantially re
duces the recombination rate. The field-effect passivation, alternatively 
termed charge-assisted population control, entails reducing either 
ns or ps through an electrostatic field. Field passivation can be ach
ieved by disrupting the equilibrium of carrier concentrations at the 
interface[44]. The existence of the built-in potential can cause band 
bending, creating an energy barrier that results in the accumulation or 
depletion of either carrier type, thus reducing carrier recombination. In 
the context of SHJ solar cells, the implementation of n-type and p-type 
selective layers, which enable the unidirectional transport of electrons 
and holes, respectively, introduces field effect passivation[45].

Silicon wafers with good passivation exhibit a high effective carrier 
lifetime τeff , which can be described in the equation below[42]: 

1
τeff

=
1

τbulk
+

1
τsurf

(3) 

where τbulk is the bulk carrier lifetime and τsurf is the surface carrier 
lifetime. The passivation layers mainly contribute to the enhancement of 
τsurf . An alternative method for assessing the passivation effect involves 
the analysis of recombination current density J0. The surface recombi
nation current density is defined by the equation below[42]: 

J0,surf =
qn2

i Seff

ND
(4) 

where ND is the doping concentration. In the case of high-performance 
SHJ solar cells, the τeff and J0,surf typically exhibit values in the range 
of several milliseconds and below 2 fA cm− 2, respectively[46].

2.2. Charge carrier selectivity

For an SSC to operate effectively, it is imperative to selectively 
extract photoexcited electrons and holes at the cathode and anode[22]. 
The interface between the metal and silicon in the conventional SSC 
experiences a pinning effect, giving rise to the formation of a depletion 
region in proximity to the contacts. Fermi level pinning (FLP) occurs due 
to the establishment of a Schottky barrier at the metal-semiconductor 
interface when the work function of the metal contact is unable to 

control the concentration of carriers[47]. Fortunately, the mitigation of 
Fermi-level pinning can be achieved by physically separating the metal 
electrode from the bulk silicon by using passivating selective contacts. 
As illustrated in Fig. 2a, this necessitates establishing a path between the 
absorber and each electrode, showcasing a notable asymmetry in con
ductivity that favors one type of carrier[30]. This path is 
well-established by the charge carrier selective layers (CSLs), which 
exhibit asymmetry transport arising from external doping procedures or 
its intrinsic material properties[30]. The performance of the solar cell is 
highly dependent on the strength of this asymmetry. Electron transport 
layers (ETLs) facilitating electrons, characterized by high electron con
ductivity and a significantly lower hole conductivity, allow the passage 
of electrons through the contact region while impeding holes[48]. 
Conversely, hole transport layers (HTLs) exhibit the opposite conduc
tivity, aligning with hole selectivity.

Brendel and Peibst has proposed a quantitative definition of the 
carrier selectivity, offering a more straightforward evaluation and 
comparison of the selectivity across different materials, which is now 
been widely used both in academic and industry [49]. According to their 
model, a generalized expression for the carrier selectivity was summa
rized in Eq. (5) below, with the assumption of ideal perfect Si wafer with 
unity ideality factor, spatially constant carrier concentrations and re
combinations[49]. 

S10 = log
(Vth(nμn + pμp)

rW2 − (
np
n2

i
− 1)

)

(5) 

where S10 is the logarithm of minority carrier selectivity S, Vth is the 
thermal voltage at a temperature of 298.15 K, r represents the recom
bination rate, W is the wafer thickness, n and p denote for electron and 
hole concentration, respectively, μn and μp stand for electron and hole 
mobility, respectively, and ni is the intrinsic carrier concentration.

For a typical homojunction solar cell under illumination, the current 
is carried predominantly by electrons on the phosphorus-diffused re
gions, owing to the substantial conductivity of electrons[22]. Despite 
holes experiencing a considerably larger driving force towards the 
electron contact side, which corresponds to a greater gradient in their 
quasi-Fermi energy, their current is inferior to the electron current due 
to their significantly smaller hole conductivity[48]. In contrast, in a 
conventional HJT solar cell exposed to light, the function of charge 
separation and selective carrier transport is achieved through the pres
ence of two wide bandgap selective layers with different conductivities 
for electrons and holes[48]. This configuration guarantees minimal 
minority carrier conductivity in the wide bandgap transport layers, both 
in the absence and presence of illumination, reducing carrier recombi
nation at the metal contacts[22].

2.3. Charge carrier transport

When contacting the ETL or HTL with c-Si, comprehending the en
ergy band alignment at the interface of c-Si/CSL is crucial for under
standing the mechanisms of charge carrier transport, as shown in 
Fig. 2b-d.

As shown in Fig. 2b, the materials for the ETL are primarily n-type 
wide-bandgap semiconductors. They need to exhibit a sufficiently small 
conduction band offset (ΔEC) in relation to c-Si. This ensures the smooth 
transfer of electrons from c-Si to the ETL, while simultaneously pre
venting the passage of holes due to a large valence band offset (ΔEV)
[50]. For HTL, there are two types of charge transport based on different 
mechanisms. The first one is analogous to the HTL, as shown in Fig. 2c, 
having a minimal ΔEV at the c-Si/HTL interface allows for the effective 
transport of holes from c-Si to HTL, with electrons being impeded by the 
large ΔEC[50]. The second theory is based on the high work function 
n-type materials, as shown in Fig. 2d and e. Upon the interaction of the 
high work function n-type materials with c-Si, the energy band align
ment results in a pronounced upward band bending on the c-Si surface. 
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Given the proximity of the conduction band of these high work function 
n-type materials to the valence band of c-Si, holes generated in the 
valence band of the c-Si absorber can traverse the contact interface 
through a tunneling effect. Subsequently, these holes recombine with 
electrons in the conduction band of the high work function n-type ma
terials[50]. As illustrated schematically in Fig. 2d and e, the transfer of 
holes from c-Si to these high work function n-type materials can occur 
either through band-to-band (B2B) tunneling or trap-assisted tunneling 
(TAT)[51]. In cases where the conduction band energy (EC) of high work 
function n-type materials surpasses the valence band energy (EV) of c-Si, 
holes transport via the B2B tunneling mechanism. Conversely, the TAT 

mechanism prevails if the high work function n-type materials has 
slightly lower EC than EV of c-Si, aided by the abundance of traps near 
the contact interface[52].

2.4. Contact resistivity

Besides the contact recombination current density (J0c) discussed in 
section 2.1, contact resistivity (ρc) is another important parameter used 
to evaluate the performance of passivating selective contacts. ρc denotes 
the interface resistance to collected charge carriers in the contact area, 
indicating the resistive loss. A reduced ρc is indicative of a higher FF 

Fig. 2. a) The operational principle of a silicon solar cell: Light absorption creates a non-equilibrium distribution of carriers, using separate quasi-Fermi levels for 
electrons (EFn) and holes (EFp). Post-excitation, carriers thermalize towards band edges. The free energy difference between quasi-Fermi levels is the implied voltage 
(iVoc). Electron (Jn) and hole (Jp) currents are driven by quasi-Fermi level gradients and conductivities. Selective membranes on either side of the absorber layer 
exhibit high conductivity asymmetry, resulting in a voltage build-up (Vext) between metal contacts for work extraction. Reproduced with permission from [30]
Copyright (2022) John Wiley and Sons. b) Depicts the band alignment between the n-type Electron Transport Layer (ETL) material and c-Si. Here, a low ΔEC 
promotes electron transport, while a large ΔEV hinders hole movement. c) Illustrates the band alignment between the p-type Hole Transport Layer (HTL) material 
and c-Si, where a low ΔEV facilitates hole transport and a large ΔEC prevents electron flow. The band alignment between n-type high Work Function Transition Metal 
Oxides (TMOs) and c-Si is shown in d) and e), where hole transport is enabled by d) Back-to-Back (B2B) tunneling and/or e) Trap-Assisted Tunneling (TAT). 
Reproduced with permission from [50] Copyright (2022) John Wiley and Sons.
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value, which is highly dependent on the energy level alignment at the 
interface[53]. Typically, there are two methods that can be used to es
timate the ρc value, including the transfer length method (TLM) and Cox 
and Strack method (CSM)[54]. In a conventional TLM measurement, 
metal electrode stripes are created with varying separation distances. I-V 
curves are then recorded across pairs of electrodes with different spac
ings. By fitting the RT against the spacing between electrode stripes (D), 
the transfer length (LT) is derived by extending the fitting curve to the 
x-axis. The intercept corresponds to 2LT, and the y-intercept of the curve 
represents 2RC. The value of RC can be expressed by using the equation 
below[55]: 

RC =
ρc

LTZ
coth(

L
LT
) (6) 

where Z and L denote the length and width of the metal stripes, 
respectively.

The conventional CSM utilizes a vertical configuration featuring 
circular metal electrodes of varying diameters on the front surface and 
complete metallization on the backside[56]. This design minimizes 
spreading current, resulting in reduced measurement errors. It is usually 
assumed that the resistance of the back contact is negligible. Through 
the measurement of current-voltage (I-V) curves for pads of different 
diameters, the total resistances (RT) can be expressed using the equation 
below[57]: 

RT =
4ρc

πd2 +
ρs

πd
arctan

(
4t
d

)

+R0 (7) 

where d represents the pad diameter, ρs denotes the resistivity of Si, t 
stands for the Si thickness, and R0 is the residual resistance. By creating a 
plot of RT against 1/d, the ρc can be determined through curve fitting
[58]. The widespread use of CSM and TLM techniques has facilitated the 
exploration and evaluation of new CSL materials that demonstrate 
Ohmic contact with c-Si[59].

It is crucial to recognize that while contacts can be highly selective, 
they may lack sufficient conductivity, leading to a detrimental drop in 
fill factor (FF). Conversely, some contacts may offer good selectivity but 
suffer from poor passivation. For instance, in c-Si cells, aluminum back- 
surface field contacts provide high selectivity and conductivity but 
underperform due to inadequate passivation. Similarly, an amorphous 
silicon (a-Si) heterojunction hole contact to c-Si, comprising thick 
intrinsic and doped a-Si layers, delivers excellent selectivity and 
passivation, resulting in high iVoc and Voc. However, its poor conduc
tivity diminishes both FF and overall efficiency. In summary, a well- 
designed passivating selective contact must simultaneously offer 
strong passivation, high conductivity, and effective selectivity, as these 
factors directly impact key solar cell parameters. Effective passivation 
enhances quasi-Fermi level (qFL) separation, thereby increasing iVoc 
within the absorber. High conductivity minimizes resistive losses at the 
maximum power point, preserving a high FF. Finally, strong selectivity 
reduces voltage losses at the contact, allowing the actual Voc to approach 
or match the iVoc[60].

3. Passivation layers

3.1. Hydrogenated amorphous silicon

In comparison with homojunction solar cells, HJT SSCs usually 
exhibit superiority in surface passivation, showing a high Voc value. 
Well-established passivation layers for homojunction solar cells, such as 
silicon oxides (SiOx), aluminum oxides (AlOx), and silicon nitride (SiNx), 
have been comprehensively reviewed by other works and will not be 
focused here[41,61–63]. In a typical HJT SSC, a thin film of a-Si:H(i) is 
deposited between the selective layer and the c-Si as the passivation 
layer[64]. It is well known that this a-Si:H(i) passivating layer should 
possess a high hydrogen content, be grown epitaxially free, and exhibit 

good optoelectrical properties[65,66]. A high-quality a-Si:H(i) layer and 
an excellent a-Si:H/c-Si interface can function to inhibit tunneling, 
reduce dangling bonds, and decrease the complexation rate[67].

Plasma-enhanced chemical vapor deposition (PECVD), a non- 
invasive and cost-effective approach, is widely used for the prepara
tion of a-Si:H(i) layer[68]. This deposition is a low-temperature process 
using silane (SiH4), often diluted by hydrogen (H2) plasmas, which is a 
dynamic process, as the entire film undergoes alterations induced by the 
reactive plasma. During the process, critical factors such as substrate 
temperature, air pressure, gas ratio, and RF power density should be 
carefully controlled[69]. The microstructure and optoelectrical prop
erties of the a-Si:H(i) layer play a significant role, where the formation of 
voids and epitaxial growth deteriorate surface passivation[65]. The 
layer produced in the intermediate region between the amorphous and 
crystalline phases has been proven to showcase excellent surface 
passivation quality[70]. At this stage, the interface between a-Si:H(i) 
and c-Si is fully relaxed, with minimal electron-active defects[64].

Attaining the high-quality a-Si:H(i) layer involves strategies such as 
using a higher hydrogen flow rate during deposition and applying pre/ 
post hydrogen plasma treatment[65]. For example, Descoeudres and 
co-workers demonstrated superior surface passivation by using a 
multi-step approach involving pure silane plasma deposition followed 
by hydrogen plasma annealing. They reached carrier lifetimes up to 
5.9 ms with 17 nm intrinsic a-Si:H layers on FZ polished wafers[73]. 
Morales-Vilches and co-workers reported an a-Si:H(i) layer with a higher 
minority lifetime showing iVoc up to 736 mV by using a diluted plasma 
with a SiH4 to H2 ratio of 1:1[74]. The effectiveness of passivation 
offered by the a-Si:H(i) layer often reduces after the deposition of the 
doped a-Si film[75]. This is possibly related to Si-H fracture in the a-Si:H 
(i) film, where the epitaxial layer can be created after depositing the 
doped selective layer[76]. In this regard, an intrinsic bilayer passivation 
method has been proposed[71,77]. In adopting a bilayer approach, the 
deposition process can be segmented into the initial deposition stage and 
the growth stage. The function of the initial deposition stage is pivotal 
for achieving a well-defined interface. During the initial stage, an 
ultra-thin buffer layer is deposited using a pure silane plasma, followed 
by the subsequent stage where silane is diluted with hydrogen to com
plete the deposition[78]. As compared in Fig. 3 a and b, the i1 layer 
possesses a markedly porous structure, which acts as a barrier to inhibit 
epitaxial growth[71]. The i2 layer exhibits minimal defects with high 
compactness, contributing to a denser film and consequently delivering 
more effective passivation quality than the single-layer passivation[79].

3.2. Hydrogenated amorphous silicon carbides

To impede epitaxial growth, incorporating carbon into the passiv
ation layer proves to be a viable strategy, as carbon atoms contribute to 
enhancing disorder in the amorphous Si layer[80,81]. Furthermore, 
hydrogenated amorphous silicon carbides [a-SiCx:H(i)] demonstrate a 
higher bandgap up to 4 eV compared to a-Si:H(i), leading to a sub
stantial reduction in parasitic absorption when used as the passivation 
layer[82,83]. Nevertheless, the efficiency of a-SiCx:H(i) passivated de
vices still lag, primarily due to the commonly observed high density of 
interface traps at the a-SiCx:H(i)/c-Si interface, particularly with an 
increased carbon atomic concentration[84]. The introduction of carbon 
into a-SiCx:H induces structural defects and inhomogeneities. Ehling and 
co-workers reported that a reduced carbon content ([CH4]/[(CH4) +
(SiH4)]) of 1.3 % correlated with a higher minority lifetime value of 
1.2 ms. A low absorption strength ratio implies a dense structure when 
carbon incorporation is low. However, with increased carbon content, 
the diffusion of hydrogen to the interface is hindered by the stronger C-H 
bond. This reduction in hydrogen atoms at the a-SiCx:H(i)/c-Si interface 
results in a deterioration in passivation quality[85]. The perceived 
benefits of using carbon do not outweigh the potential drawbacks 
associated with increased defectiveness in these alloyed layers. 
Recently, Donercark and co-workers suggested employing a stacked 
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structure comprising a-Si:H(i) and a-SiCx:H(i) to enhance interface 
passivation quality and ensure the utilization of the large band gap of 
a-SiCx:H(i) to minimize optical absorption losses, simultaneously. By 
inserting a 3 nm intrinsic a-Si buffer layer between the c-Si and intrinsic 
a-SiCx layers, they achieved an effective lifetime of 100 μs and an 
implied open-circuit voltage (iVoc) of 650 mV [84].

3.3. Hydrogenated amorphous silicon oxides

In addition to a-SiCx:H(i), various efforts have been made to address 
parasitic absorption in a-Si:H(i) film by incorporating oxygen[86,87]. 
Hydrogenated amorphous silicon oxides [a-SiOx:H(i)], possessing higher 
electronegativity compared to a-SiCx:H(i), can generate a lower defect 
state[88]. Ascribed to its tunable band gap and high-quality surface 
passivation, making a-SiOx:H(i) a viable passivation layer in HJT SSCs
[89]. Utilizing a-SiOx:H(i) as a passivation material has also been 
demonstrated to hinder epitaxial growth. This observation is linked to 

the creation of an abrupt interface by the a-SiOx:H(i) passivation layer
[90]. The a-SiOx:H(i) passivated cells usually exhibit higher Jsc value 
than a-Si:H(i) passivated cells, due to the wider band gap of a-SiOx:H(i) 
film. However, for a-SiOx:H(i) passivation layer, it is crucial to assess the 
equilibrium between passivation and carrier transport. Zhang and 
co-workers observed that an increase in gas ratio of CO2/CO2:SiH4 from 
0.33 to 0.4 enhanced ΔEV, resulting the transport of photogenerated 
electrons and compensating for absorption losses in the a-SiOx:H(i) 
passivation layer due to porosity and high defect density[91]. However, 
such a gas ratio above 0.4 led to reduced photovoltaic performance, 
attributed to poor passivation quality on the backside and hindered hole 
transport due to a higher energy barrier. To avoid such issues and pre
vent the mismatch of valence band, it is advisable to use the a-SiOx:H(i) 
layer as a passivation layer on the front surface field side of the n-type 
silicon wafer in SHJ solar cells[91]. The a-SiOx:H(i) passivation layer, 
when applied to the front side, enhanced JSC value, while a-Si:H(i) 
functioned as an effective post-passivation interface when used as a 

Fig. 3. Cross-sectional TEM images with schematic diagrams of front-junction SHJ solar cells prepared with a) single a-Si:H(i) layer, and b) two-step a-Si:H(i) layers 
or bilayers (i1 + i2). Reproduced with permission from [71] Copyright 2018 AIP Publishing. c) schematic diagrams detail the continuous-plasma CVD composite 
gradient passivation, nanocrystalline sowing, and vertical growth induction steps. The continuous plasma CVD process maintains stable RF plasma (fluctuation <

±0.5 %), monitored in real-time with rapid-response regulation to protect the epitaxy-preventing i:a-SiOx:H (1) subnanolayer. The composite gradient passivation 
involves creating low-damage i:a-SiOx:H (1)/a-Si:H (2) layers with a gradually transitional interface through continuous-plasma CVD. d) Schematic diagrams of the 
solar cell in Li’s work. e) Current density to voltage (J-V) diagram of the champion solar cells in Li’s work. Reproduced with permission from [72] Copyright 2024 
Springer Nature.
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passivation layer on the rear side, culminating in an overall photovoltaic 
efficiency of 22.2 %[90]. Very recently, Li and co-workers reported a 
two-step composite gradient passivation approach to address the 
aforementioned contradiction, as shown in Fig. 3c and d[72]. During the 
initial stage, a sub-nanolayer (<0.5 nm) of oxygen-containing amor
phous silicon (i:a-SiOx:H (1), x ≈ 10 at%) was deposited on both sides of 
c-Si using PECVD. This ultrathin passivation layer [i:a-SiOx:H (1)] serves 
to disrupt the crystal arrangement periodicity of c-Si without signifi
cantly affecting the electrical properties of the passivation contacts. In 
the subsequent stage, an epitaxy-free layer of amorphous silicon [i:a-Si: 
H (2)] with a thickness of approximately 4.5 nm was intentionally 
applied on i:a-SiOx:H (1). This additional layer enhances the passivation 
effectiveness and acts as a barrier to isolate the subsequent doping layers 
from the underlying structure, contributing to an increase in effective 
lifetime from 2.8 ms to 5.0 ms. As a result, the HJT SSC by using this 
strategy reached a record PCE of 26.81 % with a high Voc value of 
0.751 V, as shown in Fig. 3e[72].

3.4. Other materials

Besides amorphous silicon-based materials, other wide bandgap 
materials such as metal oxides also exhibit the passivation effects on c- 
Si. Gerling and co-workers demonstrated that molybdenum oxides 
(MoOx), vanadium oxides (VOx), and tungsten oxides (WOx) possess 
inherent passivation capabilities arising from the reduced density of 
surface electrons due to their high work function[92]. This passivation is 
further supported by the presence of a SiOx layer formed through the 
redox reaction between the metal oxides and c-Si. They highlighted that 
the induced band bending might be mitigated by dipole effects, and the 
SiOx layer formed may exhibit limitations in passivating the interface 
due to potential defects. Among these three materials, VOx demonstrates 
the best passivation effect on n-type c-Si, with an implied Voc of 653 mV 
and a J0c of 150 fA/cm2, followed by MoOx (637 mV and 230 fA/cm2) 
and WOx (543 mV and 420 fA/cm2). Liao and co-workers illustrated that 
titanium oxides (TiOx) can provide effective surface passivation quality 
through a process involving low-temperature atomic layer deposition 
(ALD) followed by post-deposition annealing and light-soaking[93]. 
TiOx stands out as the most effective surface passivation material among 
various metal oxides, and notably, it achieves this without the need for a 
pre-existing SiOx layer. Recently, Yang and co-workers achieved incre
mental improvements in TiOx passivated HJT SSCs, showing iVoc up to 
700 mV reaching PCE of 22.1 %[94]. The primary enhancement was 
attributed to an increased Voc of the cell facilitated by the incorporation 
of an ultrathin thermally grown SiOx layer. This addition aimed to 
enhance surface passivation quality, albeit with a slight rise in contact 
resistivity.

Nevertheless, it is obvious that these wide bandgap materials cannot 
provide as effective passivation as with the amorphous silicon-based 
materials. This can be attributed to the lattice mismatch between 
these materials and c-Si[43]. There are investigations that distinctly 
indicate that silicon-based materials deposited through PECVD yield the 
lowest surface recombination velocity values[43]. On the other hand, 
the lack of hydrogen during the preparation of these wide bandgap 
materials as the passivation layer can be another reason.

4. Selective layers

4.1. Doped silicon-based materials

External doping is typically required to achieve charge carrier 
selectivity in silicon-based materials[95]. Depending on the type of 
doping, these materials can create an interface between themselves and 
c-Si that only allows one type of charge carrier to pass through[95]. 
N-type doped silicon-based materials form electron-selective contacts, 
while p-type doped silicon-based materials form hole-selective contacts.

As summarized in Table 1, the commonly employed selective layers 

Table 1 
Summary of device performance using doped silicon-based materials as selective 
contacts in chronological order.

Publication 
time

Device structure Voc 
(V)

Jsc 
(mA/ 
cm2)

FF 
(%)

PCE 
(%)

Ref

2004 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/μc-Si(n)/Al

0.605 28.2 79 13.5 [118]

2006 Ag/ITO/nc-Si:H 
(n)/a-Si:H(i)/p-c- 
Si/Al

0.558 31.88 79.19 14.09 [119]

2006 Ag/ITO/a-Si:H 
(n)/pm-Si:H/p-c- 
Si/Al

0.617 32.4 76.5 15.25 [120]

2007 Al/a-Si:H(p)/p-c- 
Si/μc− 3 C-SiC:H 
(n)/ITO/Al

0.56 35 72.4 14.2 [121]

2007 Ag/AZO/a-Si:H 
(n)/a-Si:H(i)/p-c- 
Si/a-Si:H(p)/Al

0.596 31.46 65.7 12.3 [122]

2007 Al/Si-NC:SiC(p)/ 
n-c-Si/Al/Ti

0.463 19 53 4.66 [123]

2008 Ag/ITO/μc-SiO:H 
(n)/a-SiO:H(i)/p- 
c-Si/a-SiO:H(p)/ 
Al

0.62 32.1 77 15.32 [124]

2008 Al/Ag/ITO/μc- 
SiO:H(p)/a-SiO: 
H(i)/n-c-Si/a-Si: 
H(i)/a-Si:H(n)/ 
Ag/Al

0.671 35.2 76 17.9 [125]

2008 Ag/AZO/a-Si:H 
(n)/p-c-Si/a-Si:H 
(p)/Al

0.639 39.3 78.9 19.8 [126]

2009 Ag/ITO/nc-Si 
(n)/a-Si(i)/p-c- 
Si/Al

0.615 32.5 71 14.2 [127]

2009 Ag/ITO/μc-Si 
(n)/a-Si(i)/p-c- 
Si/Al

0.583 30.61 74.2 13.25 [128]

2009 Ag/AZO/a-Si:H 
(p)/SiO2/n-c-Si/ 
a-Si:H(n)/Al

0.62 31.9 63.61 12.58 [129]

2009 Ag/ITO/a-Si:H 
(n)/a-Si:H(i)/p-c- 
Si/Al

0.585 34.63 74.7 15.14 [130]

2009 Al/Ag/ITO/μc- 
SiO:H(p)/a-SiO: 
H(i)/n-c-Si/a-Si: 
H(i)/a-Si:H(n)/ 
Ag/Al

0.665 34.9 77 17.8 [131]

2010 Al/Ag/ITO/ 
nc− 3 C–SiC:H 
(n)/p-c-Si/μc- 
Si1-xOx:H(p)/Al

0.668 36.7 73.1 17.9 [132]

2010 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/ITO/Ag

0.717 38.2 74.2 20.3 [73]

2011 Al/Ag/ITO/a-Si: 
H(p)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(n)/Al

0.631 36.27 76.13 17.43 [133]

2011 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/BZO/Ag

0.694 31.4 76 16.5 [134]

2011 Ag/ITO/a-Si:H 
(n)/a-Si:H(i)/p-c- 
Si/μc-SiOx:H(p)/ 
Al

0.659 34.7 80.9 18.5 [135]

2011 Ag/GZO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/GZO/Ag

0.612 37.1 76 17.27 [136]

2011 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 

0.69 39.1 72.7 19.6 [137]

(continued on next page)
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Table 1 (continued )

Publication 
time

Device structure Voc 
(V)

Jsc 
(mA/ 
cm2)

FF 
(%)

PCE 
(%)

Ref

Si/a-Si:H(i)/a-Si: 
H(n)/ITO/Ag

2012 Al/ZnO/a-Si:H 
(n)/a-Si:H(i)/p-c- 
Si/Al

0.59 33.6 71 14.1 [138]

2013 Ag/IO:H/ITO/a- 
Si:H(p)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/a-Si:H(n)/ 
ITO/Ag

0.727 38.9 78.4 22.1 [139]

2013 Ag/SiOx/ITO/a- 
Si:H(p)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(n)/Al

0.662 35.7 74 17.6 [140]

2013 Ag/Al/ITO/a-Si: 
H(p)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(n)/Al

23.43 35.1 73.2 17.1 [141]

2013 Ag/BZO/a-Si:H 
(p)/n-c-Si/a-Si:H 
(n)/ITO/Ag

0.593 35.26 78.05 16.3 [142]

2013 Ag/Al/ITO:Zr/a- 
Si:H(p)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/a-Si:H(n)/Al/ 
Ag

0.71 33.66 72.4 17.31 [143]

2014 Ag/ITO/In2O3/ 
a-Si:H(p)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/a-Si:H(n)/ 
ITO/Ag

0.67 37.42 71.16 17.84 [144]

2014 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/Ag

0.647 38.1 74.7 18.41 [145]

2014 Ag/ITO/a-Si:H 
(p2)/a-Si:H(p1)/ 
a-Si:H(i)/n-c-Si/ 
a-Si:H(i)/a-Si:H 
(n)/ITO/Ag

0.725 33.82 77.41 19 [146]

2014 Al/ITO/a-Si:H 
(n)/a-Si:H(i)/p-c- 
Si/Al

0.72 35.5 73 18.66 [147]

2014 AZO/μc-Si:H(p)/ 
a-Si:H(i)/n-c-Si/ 
a-Si:H(i)/μc-Si:H 
(n)/AZO/Al

0.708 34.35 79.1 19.2 [148]

2015 Al/Ag/ITO/a-Si: 
H(p)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/μc- 
Si:H(n)/Al.

0.696 36.09 71 18.06 [149]

2015 Ag/ITO/μc-Si1- 
xOx:H(p)/a-Si:H 
(i)/a-SiOx:H(i)/n- 
c-Si/a-SiOx:H(i)/ 
a-Si1-xOx:H(n)/ 
Ag/Al

0.738 33.46 77 19 [150]

2015 Ag/IZO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/ITO/Ag

0.722 38.6 78.5 21.5 [151]

2015 Ag/IWO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/IWO/Ag

0.73 38.3 80.44 22.5 [152]

2015 Ag/IWO/a-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/IWO/Ag

0.727 38.56 78.48 22.03 [153]

2015 Ag/BZO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/BZO/Ag

0.628 41.75 67.8 17.78 [154]

Table 1 (continued )

Publication 
time

Device structure Voc 
(V)

Jsc 
(mA/ 
cm2)

FF 
(%)

PCE 
(%)

Ref

2016 Ag/ITO/a-Si(p)/ 
n-c-Si/a-Si(n)/ 
ITO/Ag

0.618 40.1 74.1 18.4 [155]

2016 Ag/ITO/nc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/nc- 
SiOx:H(p)/ITO/ 
Ag

0.704 37.7 76.7 20.4 [156]

2016 Ag/ITO/a-Si:H 
(p2)/a-Si:H(p1)/ 
a-Si:H(i)/n-c-Si/ 
a-Si:H(i)/a-Si:H 
(n)/ITO/Ag

0.71 38.77 75.43 20.78 [157]

2016 Ag/ITO/μc-SiOx: 
H(p)/a-SiOx:H 
(i)/n-c-Si/a-SiOx: 
H(i)/μc-SiOx:H 
(n)/AZO/Ag

0.646 35.83 75.5 17.47 [157]

2016 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/μc- 
Si:H(n)/ITO/Ag

0.721 36.9 79.3 21.1 [44]

2016 Ag/IWO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/IWO/Ag

0.737 38.3 78 22.5 [158]

2016 Ag/ITO/μc-SiOx: 
H(n)/a-SiOx:H 
(i)/p-c-Si/μc- 
SiOx:H(p)/AZO/ 
a-Si:H textures/ 
AZO/Ag

0.646 38.5 72.9 18.15 [159]

2016 Ag/ITO/a-Si:H 
(n)/a-Si:H(i)/p-c- 
Si/SiOx/Si(i)/ 
SiCx(p)/ITO/Ag

0.694 37.2 79.1 20.44 [160]

2016 Ti/Ag/ITO/nc-Si: 
H(p)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/nc- 
SiOx:H(n)/AZO/ 
Ag

0.727 38.8 74.5 21 [161]

2017 Ag/AZO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/Al

0.551 33.39 71.1 13.09 [162]

2017 Ag/In2O3:H/a-Si: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(p)/ITO/Ag

0.73 39.18 73.9 21.13 [163]

2017 Ti/Ag/ITO/a-Si: 
H(n)/a-Si:H(i)/p- 
c-Si/BSF/Al

0.594 36.98 72.93 16.02 [164]

2017 Ag/ITO/μc-SiC:H 
(n)/μc-SiOx:H 
(n)/a-SiOx:H(i)/ 
p-c-Si/a-SiOx:H 
(i)/μc-SiOx:H(p)/ 
ITO/Ag

0.677 37.6 74.2 28.9 [165]

2017 Ag/ITO/a-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/In2O3:H/Ag

0.68 40.2 60 16.3 [166]

2017 Ag/Al/ITO/μc- 
SiO:H(p)/a-SiO: 
H(i)/n-c-Si/a- 
SiO:H(i)/a-Si:H 
(n)/Al/Ag

0.715 34.9 78 19.4 [167]

2017 Ag/Al/ITO/μc- 
Si(1-x)Ox:H/a-Si(1- 

x)Ox:H/n-c-Si/a- 
Si(1-x)Ox:H/a-Si: 
H/Ag/Al

0.701 32.8 76.8 17.7 [168]

2017 Al/Ag/ITO/μc- 
SiOxCy:H(p)/a-Si: 
H(i)/a-SiOx:H(i)/ 

0.702 35.32 76.3 18.9 [169]

(continued on next page)
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Table 1 (continued )

Publication 
time

Device structure Voc 
(V)

Jsc 
(mA/ 
cm2)

FF 
(%)

PCE 
(%)

Ref

n-c-Si/a-SiOx:H 
(i)/a-Si:H(n)/Ag

2017 Al/Ag/ITO/a- 
SiOx(In)/n-c-Si/ 
Al

0.54 30.5 74.2 12.2 [170]

2017 Ag/SiOx/IWO/a- 
Si:H(p)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/a-Si:H(n)/ 
IWO/Ag

0.739 38.74 80.64 23.08 [171]

2017 Ag/ITO/μc-SiOx: 
H(p)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(n)/ITO/Ag

0.616 35 71.35 15.38 [172]

2017 Ag/ITO/a-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/p- 
SiCx/ITO/Ag

0.714 38.8 79.8 21.9 [173]

2017 Ag/IWO/a-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/IWO/Ag

0.745 39 79 22.74 [174]

2017 Ag/ITO/nc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(p)/ITO/Ag

0.729 40 80 21.6 [175]

2017 Ag/ITO/a-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/ITO/Ag

0.731 37.46 79.3 21.71 [176]

2018 Ag/ITO/nc-SiOx: 
H(n)/nc-Si:H(n)/ 
n-c-Si/a-Si:H(i)/ 
a-Si:H(p)/ITO/ 
Ag

0.731 38.3 80.6 22.6 [97]

2018 Ag/ITO/nc-Si:H 
(n)/mp-SiOx(n)/ 
chem.SiOx/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/ITO/Ag

0.691 33.9 79.4 18.6 [177]

2018 Ag/ITO/MoOx/a- 
SiOx(Mo)/n-c-Si/ 
a-SiOx/poly-Si 
(n)/Al

0.6 38.2 72.9 16.7 [178]

2019 Ag/AZO/nc-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/ITO/Ag

0.73 39.94 78 22.6 [179]

2019 Ag/ITO/μc-SiOx: 
H(n)/μc-SiOx:H 
seed layer/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/μc-SiOx:H(p)/ 
ITO/Ag

0.727 39 77 21.8 [102]

2019 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/AZO/Ag

0.726 40.81 80.87 23.96 [180]

2019 Ag/AZO/nc-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/AZO/Ag

0.72 39.1 75.4 21.2 [181]

2019 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/μc-SiOx:H/ 
poly-Si(n)/Ag

0.719 38.15 76.91 21.1 [182]

2019 Ag/IFO:H/nc- 
SiOx(p)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/nc-SiOx(n)/ 
IFO:H/Ag

0.702 38.32 78.08 21.01 [183]

2019 Ag/IZrO/ITO/a- 
Si:H(n)/a-Si:H 
(i)/n-c-Si/a-Si:H 

0.742 38.18 82.4 23.59 [184]

Table 1 (continued )

Publication 
time

Device structure Voc 
(V)

Jsc 
(mA/ 
cm2)

FF 
(%)

PCE 
(%)

Ref

(i)/a-Si:H(p)/ 
ITO/Ag

2020 Ag/ITO/μc-SiC:H 
(n)/SiO2/n-c-Si/ 
a-Si:H(i)/a-Si:H 
(p)/ITO/Ag

0.737 39.5 77.1 21.6 [185]

2020 Ag/MGZO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/MGZO/Al

0.706 36.72 73.3 19.02 [186]

2020 Al/AZO/a-Si:H 
(n)/a-Si:H(i)/p-c- 
Si/a-Si:H(p)/Al

0.744 42.43 83.7 25.26 [187]

2020 Ag/ITO/nc-SiOx: 
H(p)/nc-Si:H(p)/ 
a-Si:H(i)/n-c-Si/ 
a-Si:H(i)/nc-Si:H 
(n)/nc-SiOx:H 
(n)/nc-Si:H(n)/a- 
Si:H(n)/ITO/Ag

0.712 39.3 78.6 22 [188]

2020 Ag/ITO/μc-SiOx: 
H(n)/seedlayer/ 
a-Si:H(i)/n-c-Si/ 
a-Si:H(i)/a-Si:H 
(p)/ITO/Ag

0.740 39.19 82.33 23.87 [189]

2020 Ag/ITO/nc-Si:H 
(n)/nc-SiOx:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/ITO/Ag

0.739 38.7 80.7 23.1 [190]

2020 Ag/TCO/nc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/ 
p+/TCO/Ag

0.729 39.99 78.06 22.77 [191]

2020 Ag/ITO:Zn(Ar)/ 
ITO:Zn(O2)/a-Si: 
H(p)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(n)/Ag

0.739 39.12 75.97 21.96 [192]

2020 Ag/SiNx/SiO2/ 
n+/n-c-Si/mp-Si 
(i)/SiOx/mp-Si 
(i)/μc-Si(p)/ITO/ 
Ag

0.707 39.45 80.3 22.4 [193]

2020 Ag/ITO/poly- 
SiCx(n)/SiOx/p-c- 
Si/SiOx/poly- 
SiCx(p)/ITO/Ti/ 
Pd/Ag

0.741 38.1 81.6 23 [194]

2020 Ag/ITO/nc-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/AZO/Ag

0.73 39 77 21.9 [195]

2020 Ag/ITO/a-Si:H 
(n)/a-Si:H(i)+
Catdoping/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/ITO/Ag

0.723 39 79 21.2 [196]

2020 Ag/ITO/nc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/nc- 
SiOx:H(p)/ITO/ 
Ag

0.719 38.85 80.41 22.47 [197]

2020 Ag/ITiO/a-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/ITiO/Ag

0.736 39.14 82.7 23.81 [198]

2020 Ag/IWOH/nc-Si: 
H(p)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(n)/IWOH/ 
Ag

0.733 39.48 81.4 23.54 [199]

2020 Ag/ITO/a-Si:H 
(n)/a-Si:H(i)/n-c- 

0.741 39 81.6 23.6 [200]

(continued on next page)
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Table 1 (continued )

Publication 
time

Device structure Voc 
(V)

Jsc 
(mA/ 
cm2)

FF 
(%)

PCE 
(%)

Ref

Si/a-Si:H(i)/a-Si: 
H(p)/AZO/Ag

2021 Ag/ITO/a-Si:H 
(p)/a-Si:H(i2)/a- 
Si:H(i1)/n-c-Si/ 
a-Si:H(i1)/a-Si:H 
(i2)/a-Si:H(n)/ 
ITO/Ag

0.724 39.1 81.1 23 [201]

2021 Ag/Au/Ti/SiNx/ 
a-Si:H(n)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/a-Si:H(p)/ 
TCO/Ag

0.729 38.3 79.9 22.34 [202]

2021 Ag/ITO/nc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
SiOx:H(p)/nc- 
SiOx:H(p)/ITO/ 
Ag

0.729 40.5 80 23.6 [203]

2021 SiNx/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/nc- 
Si:H(n)/ITO/Ag

0.71 41.3 78.2 22.9 [204]

2021 Ag/MgF2/IWO/ 
a-Si:H(n)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/a-Si:H(p)/ 
IWO/Ag

0.731 40.16 78.07 22.92 [205]

2021 Ag/ITO/nc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(p)/ITO/Ag

0.731 39.8 81.4 23.7 [206]

2021 Ag/IWTO/a-Si:H 
(n)/a-Si:H(i)/c-Si 
(n)/a-Si:H(i)/a- 
Si:H(p)/IWTO/ 
Ag

0.746 38.7 82.9 23.8 [207]

2021 Ag+Al/ITO/nc- 
Si:H(p+)/nc- 
SiOx:H(p)/nc-Si: 
H(p)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/ 
n+/ITO/Al

0.678 36.6 77 19.11 [208]

2021 Ag/ITO/nc-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/ITO/Ag

0.754 37.85 81.5 23.27 [209]

2021 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/SiOx/nc- 
SiOx(n)/ITO/Ag

0.724 38.95 75.9 21.4 [210]

2021 Ag/IWO/nc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(p)/IWO/Ag

0.744 38.3 84.4 24.09 [211]

2021 Ag/SiO2/TCO/ 
nc-Si:H(n)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/a-Si:H(p)/ 
TCO/SiO2/Ag

0.747 39.79 82.79 24.61 [212]

2021 Ag/ITO/nc-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a- 
SiOx:H(p)/nc-Si: 
H(p)/ITO/Ag

0.714 38.82 80.1 22.2 [213]

2022 Ag/ITO/nc- 
SiOx(p)/a-Si:H 
(i)/n-c-Si/SiOx/ 
poly-Si(n)/ITO/ 
Ag

0.71 39.3 79 22 [214]

2022 Ag/Al2O3/IZO/a- 
Si:H(n)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/a-Si:H(p)/ 
ITO/Ag

0.74 40.53 72.33 21.57 [215]

Table 1 (continued )

Publication 
time

Device structure Voc 
(V)

Jsc 
(mA/ 
cm2)

FF 
(%)

PCE 
(%)

Ref

2022 Ag/IWO/a-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/ITO/Ag

0.719 38.68 82.07 22.84 [216]

2022 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/ITO/Ag

0.681 38.06 79.38 20.56 [217]

2022 Ag/IWO/a-Si:H 
(n)/a-SiOx:H(i)/ 
n-c-Si/ 
underdense a-Si: 
H(i)(HPT)/a-Si:H 
(p)/IWO/Ag

0.735 39.02 77.57 22.23 [90]

2022 Ag/IMO:H/μ-Si: 
H(n)/n-c-Si/a-Si: 
H(i)/a-Si:H(p)/ 
ITO/Ag

0.746 40 84.64 25.26 [218]

2022 Ag/ITO/nc-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/ITO/Ag

0.742 39.27 82.2 23.95 [219]

2022 Ag/ITO/n-poly- 
SiOx/SiOx/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/ITO/Ag

0.723 40.9 81 23.95 [220]

2022 Ag/ITO/AZO/ 
ITO/a-Si:H(n)/a- 
Si:H(i)/n-c-Si/a- 
Si:H(i)/a-Si:H 
(p)/AZO/Ag

0.738 38.62 83.4 23.8 [221]

2022 Cu/IMO/nc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(p)/ITO/Cu

0.746 40.24 85.08 25.54 [222]

2023 Ag/ITO/nc- 
SiOx(n)/SiOx/nc- 
Si/SiOx/n-c-Si/ 
SiOx/nc-Si/SiOx/ 
nc-SiOx(p)/ITO/ 
Ag

0.732 39.5 77.95 22.55 [223]

2023 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/Al

0.718 36.5 77.5 20.3 [224]

2023 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(n)/ITO/Ag

0.722 40.33 79.6 23.19 [225]

2023 Ag/IZO/a-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/IZO/Ag

0.743 38.35 84.22 24.02 [226]

2023 Ag/MgF2/ITO/ 
cond.nc-SiC:H/ 
passi nc-SiC:H/ 
SiO2/n-c-Si/a-Si: 
H(i)/a-Si:H(p)/ 
ITO/Ag

0.739 41.19 82.7 25 [227]

2023 Ag/IWO/a-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/a-Si: 
H(p)/GZO/Ag

0.74 38.87 82.13 23.65 [228]

2023 Ag/ITO/μc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/a- 
Si:H(p)/ITO/Ag

0.745 39.89 84.85 25.22 [229]

2023 Ag/TCO/nc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-Si:H(i)/nc- 
Si:H(p)/TCO/Ag

0.751 41.45 86.07 26.81 [230]

2023 Ag/IHfO:H/μc-Si: 
H(n)/a-Si:H(i)/n- 

0.745 40.09 83.79 25.03 [231]

(continued on next page)
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are doped a-Si:H layers, which induce the necessary band bending for c- 
Si/ doped a-Si:H. These layers mitigate recombination losses by estab
lishing an adequate electric field at the interface[98,99]. Adequate band 
bending facilitates the unimpeded transport of one type of charge car
riers while impeding the movement of carriers of opposite polarity, as 
shown in Fig. 4a. These layers, typically 5–6 nm thick, are deposited 
with appropriate doping using agent gases such as trimethyl boron 
(TMB), biborane (B2H6), and phosphine (PH3). These films are deposited 
using the PECVD method in the same equipment as the intrinsic a-Si:H 
layers. Therefore, the optical and electrical properties of doped a-Si:H 
films are also significantly influenced by deposition parameters such as 
process temperature, pressure, and the flow rates of H2 and SiH4 gases
[65]. The outstanding electrical properties of doped a-Si:H layers are 
pivotal in enhancing the performance of HJT solar cells, signifying sig
nificant advancements in their PCE[28,100]. Indeed, numerous reported 
HJT solar cells with high PCE values over 25 % are founded on doped 
a-Si:H selective layers[72,100]. However, to enhance the PCE of HJT 

solar cells further, doped a-Si:H selective layers face constraints. Un
desirable parasitic optical absorption can arise across the ultraviolet and 
visible spectrums of the solar spectrum owing to the relatively narrow 
band gap and the high defect density within the doped a-Si:H[101]. 
Moreover, silicon-based materials must be adequately doped to facilitate 
effective carrier separation and collection, while a-Si:H exhibits a low 
doping efficiency[44].

This has sparked increasing interest, particularly in the past five 
years, in utilizing doped hydrogenated nanocrystalline silicon (nc-Si:H) 
materials as a substitute for doped a-Si:H, potentially incorporating 
oxygen to form a mixed-phase nanocrystalline silicon oxide alloy
[102–104]. As shown in Fig. 4b, hydrogenated nanocrystalline 
silicon-based materials comprise a combination of amorphous and 
nanostructured phases[105–107]. Essentially, nc-Si:H, nc-SiOx:H, and 
nc-SiCx:H can be viewed as nanostructured silicon embedded within 
a-Si:H, a-SiOx:H, and a-SiCx:H, respectively[108–110]. The alloying 
characteristics of nc-SiOx:H and nc-SiCx:H contribute to their wider band 
gaps, which serve to reduce optical absorption. For example, as shown in 
Fig. 4 c and d, switching the front selective contact layer from nc-Si:H(n) 
to the nc-SiOx:H(n), the loss in absorption can be reduced by 
0.63 mA/cm2[97]. For integrating these nanocrystalline silicon mate
rials into HJT solar cells, achieving rapid nucleation without compro
mising passivation quality or hindering current collection is a challenge
[111]. Köhler and co-workers observed that employing hot wire chem
ical vapor deposition (HWCVD) for depositing nc-SiCx:H(n) at elevated 
filament temperatures (Tf) leads to a reduction in i-VOC[112]. This 
decrease is attributed to the higher hydrogen density at elevated Tf 
(1850◦C), causing etching of the SiOx passivation layer. A similar effect 
is observed when nc-SiOx:H(n) is utilized as selective layers[113]. This 
phenomenon arises from the elevated Tf, which prompts hydrogen in the 
precursor gas to permeate through microcrystalline and amorphous 
silicon thin films. Subsequently, hydrogen gradually accumulates within 
micropores at the interface of a-SiOx:H(i)/c-Si, leading to a reduction in 
passivation quality[113]. Nevertheless, achieving high Tf is crucial for 
attaining high conductivity. As Tf increases within the range of 
1700–1900◦C, conductivity escalates significantly by nine orders of 
magnitude[112]. The conductivity in nc-SiCx:H(n) primarily originates 
from its nanostructured phase[114]. By introducing only a small amount 
of doping gas (a few ppm), nc-Si:H can achieve a much higher electrical 
conductivity compared to the a-Si:H layer[115]. Consequently, mate
rials like nc-SiCx:H and nc-SiOx:H exhibit superior conductivity and 
more pronounced field-effect passivation compared to a-Si:H[115].

Nevertheless, it’s important to note that such high conductivity can 
only be achieved after the nucleation stage. Initiating microcrystalline 
nucleation necessitates the presence of loosely connected silicon net
works. This helps lower the energy barrier for transitioning from a-Si:H 
to nc-Si:H, especially under high-hydrogen dilution conditions[116]. In 
pursuing high-efficiency cells, it’s vital to deposit highly conductive 
nanolayers, ensuring sufficiently high crystallization, on a thin intrinsic 
passivation layer while maintaining excellent passivation quality in the 
intrinsic layer[97,111]. Employing a pre-deposition treatment has been 
identified as crucial, whether by employing an oxidizing plasma for 
p-type layers or by utilizing a high-phosphorous-doped seed layer for 
n-type layers[104,117]. Mazzarella and co-workers observed that while 
achieving a higher Jsc without a seed layer (nc-Si:H), there was a clear 
lower effective lifetime of 1.3 ms and iVoc of 727 mV[97]. However, 
they achieved a high cell performance of 22.6 % by depositing a seed 
layer of nc-Si:H before the nc-SiOx:H layer. Similarly, Pham and 
co-workers demonstrated that a nc-SiOx:H layer with a nc-Si:H seed 
layer can facilitate a swift transition from an amorphous to a nano
crystalline phase, leading to increased PCE. It is worth mentioning that 
the world record cell with the PCE of 26.81 % is also based on doped 
nc-SiOx:H selective layers. They pioneered a self-repairing nano
crystalline seeding technique, enabling doped contact layers to sprout 
and propagate upward from the pre-established nano seeds, creating 
pathways for "photogenerated carrier superhighways" between the 

Table 1 (continued )

Publication 
time

Device structure Voc 
(V)

Jsc 
(mA/ 
cm2)

FF 
(%)

PCE 
(%)

Ref

c-Si/a-SiOH(i)/a- 
Si:H(p)/ITO/Ag

2023 Ag/ITO/μc-SiOx: 
H(n)/a-Si:H(i)/n- 
c-Si/a-SiOx:H(i)/ 
a-Si:H(p)/ITO/ 
Ag

0.742 39.98 85.74 25.44 [232]

2023 ITO/a-Si:H(p)/a- 
Si:H(i)/n-c-Si/a- 
Si:H(n)/Aerogel/ 
Ag

0.734 39.76 80.3 23.42 [233]

2023 Ag/IMO:AZO/ 
μ-Si:H(n)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/μ-Si:H(p)/ 
IMO:AZO/Ag

0.747 40.1 85.48 25.62 [218]

2023 Ag/SiOx/IZrO:H/ 
nc-Si:H(p)/nc- 
SiOx:H(p)/nc-Si: 
H(p)/SiOx/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/a-Si:H(n)/nc- 
Si:H(n)/ITO/ 
MgF2/Ag

0.731 40.74 82.05 24.44 [234]

2023 Ag/a-SnO2/nc- 
SiOx:H(n)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/nc-Si:H(p)/a- 
SnO2/Ag

0.714 39.37 78.9 22.18 [235]

2023 Ag/ICO/nc-Si:H 
(n)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/nc- 
Si:H(p)/IZrO/Ag

0.747 39.98 82.18 24.55 [236]

2023 Ag/ITO/a-Si:H 
(n)/a-Si:H(i)/c-Si 
(n)/a-Si:H(i)/ 
WOx/Ag

0.697 37.86 79.61 21.01 [237]

2023 Ag/AlOx/ITO/a- 
Si:H(n)/a-Si:H 
(i)/n-c-Si/a-Si:H 
(i)/a-Si:H(p)/ 
ITO/AlOx/Ag

0.742 39.2 82.6 24 [238]

2024 Ag/GZO+ITO/ 
nc-SiOx:H(n)/a- 
Si:H(i)/c-Si(n)/a- 
Si:H(i)/nc-Si:H 
(p)/ITO/Ag

0.741 39.12 82.03 23.8 [239]

2024 Ag/ITO/a-Si:H(i) 
with Cat-doping/ 
c-Si(n)/a-Si:H(i)/ 
a-Si:H(p)/ITO/ 
Ag

0.734 39.83 81.18 23.76 [240]
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upper and lower layers[72].
In summary, the use of doped silicon-based materials as selective 

layers has demonstrated promising results for achieving high perfor
mance in HJT solar cells. However, their relatively low bandgap still 
leads to significant parasitic absorption, limiting further enhancements 
in PCE. Additionally, the doping process is environmentally unfriendly 
and expensive, requiring toxic doping sources and capital-intensive 
equipment. So far, there is debate on the optimal doping concentra
tion in the a-Si layers to achieve the best balance between high con
ductivity and minimized recombination losses. High doping improves 
carrier transport but may increase defect density. As an alternative, a 
dopant-free approach is emerging, aiming to replace doped Si materials 
with wide bandgap materials to mitigate parasitic absorption losses. The 
selection and extraction of free charge carriers can be achieved without 
resorting to doping methods, as the energy band offset inherent to the 
material’s work function allows for the same mechanism. A sufficiently 
high or low work function can maintain either an accumulation or 
inversion regime at the surface when illuminated, thereby enabling 
asymmetric electron or hole conduction. Also, these dopant-free mate
rials can be produced using simple and cost-effective deposition tech
niques such as thermal evaporation and solution-processed methods, 
potentially reducing production costs

4.2. Dopant-free materials

4.2.1. Metal oxides
Transition metal oxides (TMOs) represent a significant category of 

dopant-free solutions with work functions spanning from 3.5 eV to 7 eV, 
primarily falling under the classification of wide bandgap semi
conductors, as shown in Fig. 5a. These layers boast exceptional trans
parency, stability, and availability, providing a suitably aligned 
conduction or valence band offset concerning silicon. Additionally, TMO 

layers exhibit minimal parasitic losses. Compared to doped silicon-based 
materials, TMO selective layers offer advantages in terms of lower 
deposition costs and greater compatibility with industrial processes. 
TMOs, characterized by their high work function, function as hole- 
selective layers due to their n-type nature, which arises from the pres
ence of oxygen vacancies in their atomic structure. Commonly utilized 
HTLs include MoOx, WOx, and VOx[241–243]. These layers’ elevated 
work functions result in hole accumulation near the surface, inducing 
band bending in the c-Si absorber and facilitating high hole conductiv
ity. Materials such as TiOx, HfOx, ZnO, and TaOx serve as ETLs, with 
their high electron conductivity promoting electron collection at the 
terminal[244–247]. Several research groups have proposed the forma
tion of an interface dipole in conjunction with band bending as the 
mechanism for carrier collection[53,59]. For TMOs, their electronic 
characteristics, including electron affinity (EA), work function (WF), and 
other factors, significantly influence the band alignment with c-Si and 
thus determine carrier selectivity[50]. The WF and conductivity of 
TMOs primarily depend on the number of oxygen deficiencies, which 
can be affected by factors such as substrates, fabrication techniques, and 
post-deposition treatments[248–251].

So far, the PCE of HJT solar cells utilizing TiOx or MoOx as the se
lective layer has steadily increased, while those utilizing other TMOs as 
the selective layers, such as WOx, VOx, ZnO, and TaOx, have lagged. 
Therefore, the widely reported TiOx and MoOx will be discussed as 
illustrative examples. Regarding TiOx as the ETL, theoretical simulations 
indicate that when the EA of TiOx falls within the range of 3.6–4.0 eV, 
the interfacial recombination rate tends to be low, potentially leading to 
high PCE in solar cells[256]. If the EA of TiOx is less than 3.6 eV, it can 
enhance the built-in electric field, but this may lead to increased 
recombination and compromise cell efficiency[253]. Conversely, if the 
EA of TiOx exceeds 4 eV, it can result in a higher energy barrier for 
electron transport. However, empirically reported EA of TiOx typically 

Fig. 4. a) Schematic diagrams of the band bending in HJT solar cells with doped a-Si:H as selective layers on both sides.Reproduced with permission from [65]
Copyright 2018 Springer Nature. b) TEM and HRTEM image of nc-SiOx:H/a-SiOx:H multilayer film, where inset shows the nanocrystal phase embedded in silicon 
oxide matrix [96]. Simulated absorption and reflection spectra for HJT solar cells with c) doped (n)nc-Si:H and d) doped (n)nc-SiOx:H as the selective layer. 
Reproduced with permission from [97] Copyright 2018 Elsevier.
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falls between 4.0 and 4.3 eV[257]. Wu and co-workers discovered that 
EA of TiOx varies with the Ti/O ratio, and a relatively high EA can be 
achieved with a high oxygen content in the TiOx film[258]. Zhu and 
co-workers found that annealing under continuous H2 and Ar flux can 
create oxygen vacancies in TiOx, the concentration of which can be 
utilized to adjust the EA of TiOx (ranging between 2.2 and 4.5 eV) and 
conductivity in a controlled manner[259]. Regarding MoOx as the HTL, 

which exhibits WF range from 4.5 eV to 6.9 eV, theoretical calculations 
suggest that it needs a sufficiently high WF (>5.5 eV) to ensure effective 
field-effect passivation at the contact interface, reducing surface 
recombination and achieving optimal Voc with limited requirements for 
chemical passivation[56,260]. The higher WF of MoOx positions its 
Fermi energy level closer to the valence band of c-Si, causing the crea
tion of a larger conduction band offset at the MoOx/c-Si interface, 

Fig. 5. a) Bandgap diagrams and WF positions (dashed lines) of typical dopant-free selective materials including metals, metal compounds, and organic materials, 
referenced to c-Si energy band edges (gray bar). Energy levels are indicative and vary with deposition methods, stoichiometry, and doping concentrations. 
Reproduced with permission from [50] Copyright 2022 John Wiley and Sons. b) The Band diagram demonstrated the carrier transport mechanism of the HJT solar 
cell based on MoOx as the selective layer. Reproduced with permission from [252] Copyright 2021 Elsevier. c) Structure and J-V curves of HJT solar cell featuring a 
TiOx or SiOx/TiOx stack selective contact. Reproduced with permission from [253] Copyright 2016 John Wiley and Sons. d) Contact resistance vs. LiFx thickness for 
heterocontacts with TiOx (purple) and a-Si:H (i) (green) interlayers. Reproduced with permission from [254] Copyright 2016 Springer Nature. e) Chemical molecular 
structure and morphology of PEDOT:PSS. Reproduced with permission from [255] Copyright 2017 The American Association for the Advancement of Science.
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inducing more efficient hole inversion, as shown in Fig. 5d[51,252]. 
This phenomenon has been illustrated by Mehmood and co-workers, 
wherein adjusting the WF of MoOx from 4.5 eV to 5.7 eV led to PCE of 
HJT solar cells increased from 1.62 % to 23.32 %[261]. Battaglia and 
co-workers discovered that subjecting evaporated MoOx films deposited 
on gold substrates to UV-ozone exposure for 30 minutes can elevate its 
WF to as high as 6.6 eV[262]. Gregory and co-workers found that HF 
treatment could further increase the WF of MoOx, as observed from UPS 
spectra[263].

In the context of device performance, as summarized in Table 2, for 
the first time, TiOx deposited using a modified CVD process was applied 
on the front side of p-Si solar cells as ETL, resulting in a PCE of 7.1 %
[264]. However, this was constrained by high carrier recombination on 
both sides and poor lateral conductivity of TiOx. Later, Yang and 
co-workers achieved a breakthrough with TiOx ETL by developing an 
ALD-deposited TiOx-based contact, which provided excellent surface 
passivation and low contact resistivity simultaneously[253]. A low 
effective surface recombination velocity of 11 cm/s, equivalent to a J0 of 
approximately 20 fA/cm2, was achieved on n-Si passivated with a 
5.5 nm ALD TiOx layer[253]. Chao and co-workers integrated ALD-TiOx 
into the structure of a-Si:H(i)/TiOx/low-WF metal contact. This config
uration successfully achieved high-quality passivation and a low contact 
resistivity, resulting in an 18.2 % efficient device. As a result, there was 
no longer a need for a heavily doped a-Si:H layer[265]. In 2016, Yang 
and co-workers made gradual advancements in solar cells with TiOx as 
the ETL, achieving a PCE of 22.1 %[94,253,266]. The primary 
enhancement stemmed from enhancing the Voc of the cell through the 
incorporation of an extremely thin thermally grown SiOx layer, which 
enhanced surface passivation quality albeit with a minor rise in contact 
resistivity, as shown in Fig. 5c. Furthermore, these studies also high
lighted the significant contribution of the capping Al electrode to elec
tron selectivity. Indeed, while the a-Si:H/TiOx stack demonstrated 
impressive surface passivation qualities, the illuminated J-V curve of the 
device featuring an a-Si:H/TiOx contact displays an "S-shape," suggest
ing inadequate electron selectivity[267,268]. Besides Al, using a low WF 
material for capping, such as LiF, Ca, and Yb, has proven effective in 
enhancing the electron selectivity of TiOx-based ETLs[241,269,270]. 
Through the integration of a partial TiOx/LiF and TiOx/Ca passivating 
contact on n-Si solar cells, remarkable efficiencies of 23.1 % and 21.8 % 
were attained, respectively[241,269]. Similarly, with Yb capping, a 
textured Si/a-Si:H/TiOx/Yb hetero-contact exhibited a very low ρc 
(~1 mΩ•cm2), leading to a noteworthy PCE of 19.2 %[270].

Compared to other TMOs, MoOx is more widely reported as the HTL 
in HJT solar cells. In 2011, Park and co-workers presented a study where 
they achieved a 6.26 % efficiency in a-Si:H based thin film solar cells by 
employing thermally evaporated MoOx film instead of a-SiCx:H(p) films
[271]. Following this, in 2014, Battaglia and co-workers integrated 
MoOx films into HJT solar cells to replace the a-Si:H(p) layers, resulting 
in significant optical improvements[272]. This enhancement led to a 
total photocurrent increase of 2.4 mA/cm2 and achieved a high effi
ciency of 18.8 %, Voc of 711 mV, and Jsc of 39.4 mA/cm2[272,273]. 
Later, Cho and co-workers investigated the interface properties and 
thermal stability of MoOx films, achieving a PCE of 19.3 %, Voc of 
724 mV, and FF of 0.74[274]. HJT solar cells were fabricated using a 
10 nm thick MoOx film, resulting in a PCE of overpassing 20 % and an 
effective minority carrier lifetime of 2.3 ms[275]. Recently, Kumar and 
co-workers achieved a high PCE of 20 %, Voc of 695 mV, FF of 0.74, and 
Jsc of 38.9 mA/cm2[275,276]. Jinhun and co-workers reported a high 
Voc of 730 mV, FF of 0.78, and efficiency of 21.3 % with a 3 nm thick 
MoOx HTL[277]. More recently, Geissbuhler and co-workers achieved 
an efficiency of 22.5 % and FF of 80 % using a MoOx HTL[278]. So far, 
the highest device PCE employing the MoOx HTL in HJT solar cells is 
23.83 %, as reported by Cao and co-workers[279]. They utilized a 4-nm 
thick MoOx layer, deposited via thermal evaporation, positioned be
tween an a-Si:H passivating layer and an tungsten-doped indium oxide 
(IWO) and MgF2 stack. The exceptional device performance primarily 

stems from the superb passivation offered by the intrinsic a-Si:H layer, 
along with the high transparency and good selectivity of the thin MoOx 
layer.

It is worth mentioning that the electronic characteristics of TMOs can 
be impacted by various factors during solar cell fabrication, including 
exposure to air, contact with reducing agents, and heating, all of which 
may influence the ultimate performance of the solar cell. Exposure to 
air, for instance, can lead to the reduction of metal oxides through re
actions with hydrogen and water, or the adsorption of additional ele
ments such as carbon and other metals[30,92]. For example, MoOx as 
HTL can induce instability in HJT solar cells[262,280,281]. Before and 
after the contact annealing process, oxidation occurs, leading to a 
reduction in the WF of MoOx and an increase in the ρc, consequently 
impairing the photoelectrical performance. The conditions of annealing 
and plasma processing, as well as the stability of the deposited MoOx 
layer, may dictate the formation of an interfacial a-SiOx layer within the 
a-Si:H(i)/MoOx stack[282]. Moreover, unless a pre-annealing step of the 
a-Si:H layer before MoOx deposition is implemented, degradation of the 
MoOx film can transpire during annealing for screen-printed metalliza
tion, triggered by hydrogen effusion from the adjacent a-Si:H(i) layer, 
thereby detrimentally impacting hole extraction and transport from the 
c-Si wafer[283]. Herein, although TMOs as selective layers in HJT solar 
cells continuously achieved promising PCE results, there is the ongoing 
debate over how much efficiency can be sacrificed for improved sta
bility. For example, MoOx can be sensitive to environmental factors, 
which can lead to degradation of the device over time. More in
vestigations are required to evaluate their stabilities. It’s worth 
compromising slightly on efficiency if the passivating contacts signifi
cantly enhance stability, while others prioritize immediate gains in 
efficiency.

4.2.2. Other metal compounds
Besides TMOs, various other metal compounds such as halides, ni

trides, sulfides, phosphides, and carbonates have been explored as 
dopant-free selective layers for HJT solar cells[348,371–379]. Among 
these materials, metal halides exhibit minimum parasitic absorption loss 
due to their large band gap, usually larger than 10 eV[379]. Several 
studies have demonstrated that metal halide films, deposited via thermal 
evaporation and thinner than 10 nm, exhibit crystalline structures, such 
as rock-salt or fluorite configurations. Schottky and Frenkel defects are 
frequently observed in these ionic solids, leading to the trapping of 
carriers and the formation of F- or H- centers, thus allowing for the 
generation of small-radius polarons[380]. Because these defects have a 
lower energy of formation at the surface compared to the bulk, there is a 
suggestion that the charge accumulation at the interface with other 
materials aids in charge transport[381,382]. Inspired by the organic 
semiconductors, many initial studies are based on LiFx in HJT solar cell, 
which successfully demonstrated that LiFx can reduce series resistance 
significantly as ETL[383,384]. The LiFx, known for its extremely low 
work function of approximately 2.9 eV, can achieve very low contact 
resistances of around 1 mΩ•cm2 and 7 mΩ•cm2 on the c-Si/LiFx and 
c-Si/a-Si:H(i)/LiFx HJT structure, as shown in Fig. 5d[254]. A PCE of 
19.4 % was achieved on HJT solar cells utilizing full-area LiFx ETL[254]. 
This was subsequently improved to 20.7 % by implementing a TiOx/LiFx 
bilayer design with enhanced thermal stability[244]. In 2016, James 
and co-workers reported a PCE of 20.6 % by using a partially contacted 
LiFx as ETL, attributed to its remarkably low contact resistivity[385]. In 
addition to the LiFx, the MgFx with low WF of around 3.5 eV is also 
widely investigated, where the c-Si/MgFx and c-Si/a-Si:H(i)/MgFx HJT 
demonstrated a low ρc value of approximately 35 mΩ•cm2 and 
76 mΩ•cm2, respectively[376]. In 2016, Cuevas and co-workers ach
ieved a PCE of 20.1 % by using MgFx as the ETL in HJT solar cells[376]. 
Later on, Ballif and co-workers improved this PCE to 22.1 % by using Mg 
capping on top of MgFx in the IBC device structure[386]. Moreover, 
there are also many studies focused on other metal halides, including 
KFx, CaFx, and CsFx as the ETL, and CuI as the HTL, however their device 
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Table 2 
Summary of device performance using metal oxides as selective contacts in chronological order.

Publication time Device structure Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Ref

2013 Ag/Al/ITO:Zr/a-Si:H/n-c-Si/Al 0.71 34.44 74.83 18.3 [284]
2014 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.711 39.4 67.2 18.8 [272]
2014 Ag/MoO3/PEDOT:PSS/n-c-Si/Liq/Al 0.63 29.2 74.9 13.8 [285]
2015 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.725 38.6 80.36 22.5 [278]
2015 Ag/ITO/V2Ox/n-c-Si/a-SiC0.2:H(i)/a-Si:H(n)/a-SiC:H/Ti/Al 0.606 34.4 75.3 15.7 [242]
2016 SiNx/SiO2/n-c-Si/V2Ox(Cs2O3)/Ag 0.61 38.85 70 16.59 [286]
2016 Ag/ZnO NW/p-c-Si/Al 0.52 48.31 36.46 9.17 [287]
2017 Ag/PEDOT:PSS/n-c-Si/TiOx/Al 0.643 30.7 72.4 14.3 [288]
2017 Ag/ITO/V2O5/n-c-Si/a-SiC0.2:H(I)/a-Si0.2:H(n)/a-SiC:H/Ti/Al 0.605 34.5 74.7 15.6 [289]
2017 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/BZO/Ag 0.599 38.12 72.7 16.6 [290]
2017 Ag/Al2O3/SiNx/p+/n-c-Si/SiO2/TiO2/Al 0.676 39.6 80.7 21.6 [267]
2017 Al/AZO/Zn1-xMgxO/ZnO-NR/p-c-Si/Al 0.49 37 72 13.2 [291]
2017 Ag/ITO/WOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.705 32 76 16.8 [292]
2017 Ag/ITO/a-Si:H(n)/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(p)/MoOx/ITO/Ag 0.73 37.25 77.5 21.8 [277]
2017 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.724 39.05 74.5 20.7 [293]
2017 Ag/PEDOT:PSS/n-c-Si/TiO2/Al 0.62 31 75.96 14.6 [294]
2017 Ag/TiO2/PDMS/PEDOT:PSS/n-c-Si/Al 0.632 31.98 76.74 15.51 [295]
2017 Ag/ITO/MoOx/n-c-Si/MgOx/Al 0.595 32.6 73.4 14.2 [51]
2018 ITO/MoOx/n-Si/SiOx/low-WFMs(Mg) 0.71 39.1 78.5 21.8 [296]
2018 Ag/p-(Cu2O:N/CuO:N/CuO:Pd/CuO)/Ti/n-c-Si/Al 0.46 28.5 63 8.3 [297]
2018 Ag/PEDOT:PSS/n-c-Si/AZO/Al 0.641 27.6 78 13.6 [298]
2018 Ag/ITO/MoOx/n-c-Si/a-Si:H(n)/GaP/ITO/Ag 0.598 34.3 69 14.1 [299]
2018 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.71 36.75 75.9 20.8 [283]
2018 Ag/ITO/NiO:Cu/n-c-Si/n+/Mg/Al 0.378 35.6 67.7 9.1 [300]
2018 Ag/ITO/ZnS/p-c-Si/WO3/Ag 0.525 33.75 61.73 10.94 [301]
2018 Ag/ITO/NiO:Cu/SiOx/n-c-Si/Mg 0.428 36.2 69.4 10.8 [302]
2018 PEDOT:PSS/MoOx/Ag/PEDOT:PSS/SiNWs/n-c-Si/Al 0.622 33.5 78 16.3 [303]
2018 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/TiOx/Ca/Al 0.711 35.1 72.9 18.2 [265]
2018 Ag/TiO2/SiNWs/n-c-Si/Al 0.553 18.4 60.3 6.15 [304]
2018 Ag/ITO/MoOx/n-c-Si/a-SiC(0.2)(i)/a-Si:H(n)/a-SiC:H(BRC)/Al 0.614 32.8 73.2 14.7 [305]
2018 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/AZO/Al 0.672 38.23 71.95 18.46 [306]
2018 Ag/ITO/MoOx/a-SiOx:H/n-c-Si/a-SiOx:H/a-Si:H(n)/ITO/Ag 0.675 31.7 77.4 16.6 [307]
2018 Ag/AZO/n-CdS/p-c-Si/MoO3/Ag 0.543 28.75 68.13 10.64 [308]
2018 Ag/PEDOT:PSS/n-c-Si/SnO2/Ag 0.593 33.16 72 14.16 [309]
2018 Ag/ITO/MoOx/n-SiNWs/Cs2CO3/Al 0.631 38.1 70.2 16.9 [310]
2018 Ag/PEDOT:PSS/n-c-Si/a-Si:H(i)/Li-ZnO/Al 0.623 33.58 72.38 15.14 [311]
2018 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.69 38.88 74 20 [276]
2019 Ag/V2Ox/Ag/V2Ox/n-c-Si/Al2O3/TiO2/Mg/Al 0.618 27.1 79.5 13.3 [312]
2019 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/TiOx/Yb/Ag 0.732 33.8 78.6 19.2 [270]
2019 ITO/V2O5/n-SiNWs/TiO2/Al 0.49 35.7 72.7 12.7 [313]
2019 Ag/ITO/MoOx/n-c-Si/LiFx/Al 0.563 34.35 72.18 13.96 [314]
2019 Ag/AZO NRs/AZO seed layer/p-c-Si/Al 0.529 30 39.38 6.25 [315]
2019 Ag/PEDOT:PSS/n-c-Si/TiO2/LiFx/Al 0.626 31.9 75.6 15.1 [316]
2019 Ag/PEDOT:PSS/n-c-Si/MgOx/Al 0.623 33.8 73.9 15.5 [317]
2019 Ag/ITO/CdS/n-c-Si/MoOx/Ag 0.483 35.45 71.62 12.29 [318]
2019 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/SiOx/SnO2/Mg/Al 0.695 37.71 71.11 18.6 [319]
2019 Ag/ITO/s-MoOx/n-c-Si/Ti/Pd/Ag 0.465 30.92 56.6 8.13 [320]
2019 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.724 36 74.1 19.3 [274]
2019 Ag/MoOx/n-c-Si/LiFx/Al 0.587 31.64 58.18 10.81 [321]
2019 Ag/SiNx:H/n+/p-c-Si/MoOx/Ag 0.632 36.21 80.89 18.49 [322]
2019 Ag/ITO/NiOx/SiOx/n-c-Si/SiOx/LiFx/Al 0.58 36.9 71.06 15.2 [323]
2019 Ag/PEDOT:PSS/n-c-Si/SiOx/EDTA-SnO2/Ag 0.562 28.8 71.2 11.52 [324]
2019 Ag/ITO/MoO3/n-c-Si/n++/Al 0.572 33.9 66.5 12.89 [325]
2019 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/TiOx/Yb/Ag 0.65 33.9 73.7 16.3 [326]
2020 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.734 39.15 81.77 23.48 [327]
2020 Ag/ITO/Cu2O:B/n-c-Si/Ag 0.37 36.5 40.6 5.48 [328]
2020 Ag/ITO/a-Si:H(n)/a-Si:H(i)/n-c-Si/a-Si:H(i)/MoOx/Ag 0.713 37.5 78.92 21.1 [329]
2020 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/MgO/Al 0.687 33.8 72.4 16.8 [330]
2020 Ag/ITO/MoOx/n-c-Si/LiFx/Al 0.574 34.89 72.55 14.53 [331]
2020 Ag/PEDOT:PSS/n-c-Si/TiO2/Ag/Al 0.616 28.5 70.9 13.08 [332]
2020 Ag/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/LiF/Al 0.666 41.6 73.2 20.3 [333]
2020 Ag/SiNx/n+/p-c-Si/SiOx/MoOx/Ag 0.603 36.45 72.14 15.86 [334]
2020 Ag/ITO/WOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/Ag 0.66 35.91 56.07 13.29 [335]
2020 Al/AZO/nc-SiOx:H(n)/a-Si:H(i)/n-c-Si/a-Si:H(i)/MoOx/Ag 0.678 33.6 73.5 16.7 [336]
2020 Ag/SiNx/n+/p-c-Si/UV-SiOx/MoOx/V2Ox/ITO/Ag 0.626 38.5 82.8 20 [337]
2020 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/LPD-TiO2/Al 0.6 31.5 77.8 14.7 [338]
2020 Ag/ITO/In2S3/p-c-Si/MoOx/Ag 0.461 36.93 62.94 10.72 [339]
2020 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/ZnO/LiFx/ITO/Al 0.727 37.6 78 21.3 [340]
2021 Ag/ITO/MoO3/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.716 37.5 74.01 19.86 [252]
2021 Ag/ITO/MoOx/SiOx/MoS2-QD/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.697 40.8 80.2 22.8 [341]
2021 Ag/SiNx:H/n+/p-c-Si/MoOx/Ag 0.622 38.8 79 19.19 [342]
2021 Ag/ITO/a-Si:H(n)/a-Si:H(i)/p-c-Si/a-Si:H(i)/MoOx/ITO/Ag 0.636 35.62 78.53 17.89 [343]
2021 Ag/ITO/a-Si:H(n)/a-Si:H(i)/n-c-Si/a-Si:H(i)/Cu2O(p)/ITO/Ag 0.584 36.8 63.8 13.7 [344]
2021 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/SiOy/TiOx/Mg/Al 0.537 27.64 59.96 8.89 [345]

(continued on next page)
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performance is still comparatively low[254,374].
Although metal halides as selective layers are promising in low 

contact resistivity, their stability is an issue[22]. Many metal halides 
lack stability in air and demand uninterrupted metallization processes 
without vacuum interruption, restricting their viability for large-scale 
production. Considering this, metal nitrides emerge as an alternative, 
given their extensive application as copper diffusion barriers in micro
electronics and as photoanodes for photo-electrochemical water split
ting, boasting high stability and conductivity[387,388]. In 2018, 
tantalum nitride (TaNx) deposited via ALD was reported for the first time 
as the ETL[389]. As a result, their device achieved a PCE of 20.1 % with 
moderate surface passivation and a low ρc. In 2019, TiNx was first re
ported as the ETL, offering a low ρc of 16.4 mΩ•cm2 and a manageable 
J0 of approximately 500 fA/cm2[378]. Combined with SiOx as the 
passivation layer, their device achieved a PCE of 20 % with a simplified 
fabrication process and reduced cost. Currently, the number of in
vestigations into metal nitrides as selective layers is still low. Further 
exploration of other transition metal nitrides, such as zirconium nitride 
(ZrNx), hafnium nitride (HfNx), and molybdenum nitride (MoNx) could 
prove to be promising avenues for research. Moreover, a few studies also 
presented that metal carbonates including K2CO3, Rb2CO3, Cs2CO3, 
CaCO3, SrCO3 and BaCO3, can be used as ETLs in solar cells[390–392]. 
Combined with VOx as the HTL, the proof-of-concept DASH solar cell 
using Cs2CO3 as the ETL can achieve a PCE of 16.59 %, exhibiting a 
promising prospect[286]. Furthermore, other metal compounds such as 
CdS, ZnS, and GaP also show potential for application as the ETL
[393–395]. However, their device performance lags far behind.

As summarized in Table 3, the use of other metal compounds as the 
dopant-free selective layer in HJT solar cells has garnered increasing 
research interest in recent years. While a few of them have already 
demonstrated considerable device performance, further systematic 
studies are needed in this area. There is still a vast family of metal 
compounds that can be explored to deliver better device performance in 
HJT solar cells, such as ternary and quaternary species[396,397].

4.2.3. Organic materials
Organic molecules present another category of materials viable for 

dopant-free selective layers in HJT solar cells. They offer simplicity in 
fabrication and a wide array of options due to their versatility in 
modifying functional groups[50]. Some organic materials exhibiting 
electron selectivity are C60, PCBM, N2200, poly(ethylene oxide) (PEO), 

pyrrolidine tris-acid (CPTA), polyethylenimine (PEI), 8-hydroxyquinoli
nolato lithium (Liq), and SAMs[417–422]. Sun and co-workers reported 
PCEs of 13.7 % and 14.9 % for using PCBM and N2200 as the ETL in HJT 
solar cells, respectively[423]. Their findings revealed that the interac
tion between c-Si and organic materials plays a pivotal role in achieving 
efficient charge collection. The molecular structure was observed to 
influence the physical distance between silicon and organic materials. 
The shorter distance between PCBM and c-Si facilitates a higher charge 
transfer rate. This increased rate contributes to the formation of a more 
robust rear surface field effect, thereby reducing surface recombination. 
In another study, they further altered the N2200 molecule to F-N2200 by 
replacing a hydrogen atom with a fluorine atom[424]. This substitution 
led to a reduced physical distance and denser intermolecular stacking 
between the organic materials and c-Si. Consequently, the solar cells 
based on F-N2200 achieved a higher PCE compared to those based on 
N2200. He and co-workers reported two narrow-bandgap conjugated 
polymers, PTB7-NBr and PTB7-NSO3, as ETLs with different functional 
groups[425]. As a result, the electrical properties of PTB7-NBr resulted 
in a lower contact resistance of 6.7 ± 0.8 mΩ⋅cm2 compared to 
PTB7-NSO3 (50 ± 25 mΩ⋅cm2), showing better device performance. Ye 
and co-workers reported the use of poly(ethylene oxide) (PEO) as ETL 
between the c-Si and electrodes. The presence of an interface dipole 
generated by PEO expanded the built-in voltage (Vbi), leading to the 
achievement of a PCE of 12.3 %[420]. It is noteworthy that, among 
these organic ETLs, the device incorporating PEI achieved one of the 
highest PCEs, reaching 19.5 %[421]. Furthermore, self-assembled 
monolayers (SAMs) have emerged as promising alternatives to con
ventional charge-selective contacts in the perovskite research commu
nity[426]. Typically, a SAM comprises three components: an anchoring 
group, a spacer (or bridge), and a functional group. The combination of 
these constituents enables the customization of molecule design to align 
with the energy levels, charge mobility, and wettability required for 
optimal performance in photovoltaic devices[427,428]. SAMs organize 
into ordered arrays that, based on their structure, exhibit a dipole 
moment capable of modulating the work function of the substrate, 
thereby facilitating charge extraction at the interfaces[429,430]. Most 
recently, in a pioneering study, Stefaan and co-workers introduced 
n-PACz SAMs, featuring carbazole and phosphonic acid groups, as po
tential candidates for use as ETLs in HJT solar cells[431]. By introducing 
2PACz between amorphous silicon-passivated c-Si and Al, they achieved 
an electron-selective contact with a carrier lifetime of 4.4 ms, iVoc of 

Table 2 (continued )

Publication time Device structure Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Ref

2021 Ag/ITO/s-V2Ox/n-c-Si/Ti/Pd/Ag 0.556 33.86 57.14 10.75 [346]
2021 Ag/MoOx-CNT/n-c-Si/Ag 0.5 30.6 58 8.8 [347]
2021 Ag/ITO/n-ZnS/p-c-Si/WO3/Ag 0.529 33.55 61.17 10.86 [348]
2021 Ag/TCO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/TCO/Ag 0.7 39 75 22 [349]
2021 Ag/SiNx:H/n+/p-c-Si/SiOx/MoOx/SiOx/Ag 0.650 39.8 83.34 21.6 [350]
2021 Ag/ITO/a-Si:H(p)/a-Si:H(i)/p-c-Si/a-Si:H(i)/SnO2/Mg/Al 0.718 36.2 77.3 20.1 [351]
2022 Ag/SnO2 NSs/SnO2 TF/p-c-Si/Ag 0.312 20.28 48.84 3.09 [352]
2022 Al/Ag/MoOx/Ag/MoOx/n-Si/MoOx/Mg/Al 0.554 32.25 49.25 8.8 [353]
2022 Ag/ITO/MoOx/n-Si/Al 0.36 35.15 31.85 4.03 [354]
2022 Ag+Al/TCO/MoOx/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/TCO/Al 0.711 32.8 74.9 17.5 [355]
2022 Al/RbFx/SiNx/TiOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/MoOx/Ag 0.709 40.5 79.6 22.9 [356]
2022 Ag/ITO/MoOx/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.708 37.38 74.59 19.75 [357]
2022 Au/rGO:ZnO-NRs/ZnO/p-c-Si/Al 0.357 6.67 55.2 14.12 [358]
2022 Cu/MgF2/IWO/MoOx/PTB/c-Si(n)/a-Si:H(i)/a-Si:H(n)/IWO/Ag 0.721 40.2 82.18 23.83 [359]
2023 Ag/SiNx/n+/p-c-Si/MoO(3-x):Nb/Ag 0.615 39.68 75.344 18.37 [360]
2023 Ag/PEDOT:PSS/V2Ox/n-c-Si 0.593 29.97 71.12 12.64 [361]
2023 Ag/ITO/MoO(3-x)/n-c-Si/Al/Ag 0.517 39.43 49.6 10.17 [362]
2023 Ag/ITO/MoOx/MoS2-QDs/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ag 0.698 40.8 81.1 23 [363]
2023 Ag/SiNx/n+ layer/p-c-Si/V2O5/Ag 0.597 39.66 72.84 17.23 [364]
2023 Ag+Al/AZO:Me/a-Si:H(i)/n-c-Si/a-Si:H(i)/a-Si:H(p)/ITO/Ag 0.693 39.8 71 19.58 [365]
2023 Au/MoOx + SnCl2@SWCNTs/n-c-Si/Au 0.26 108 29 8.20 [366]
2023 Ag/SiNx/n+/p-c-Si/Ta2O5/Ag 0.612 39.64 76.24 18.47 [367]
2023 p-Si/SiOx(FGA)/L-MoOx/Ag 0.633 40.47 84.38 21.75 [368]
2023 Ag/ITO/AZO/MoOx/a-Si:H(i)/n-c-Si 0.73 41.29 77.4 23.32 [369]
2024 Ag/SiNx:Al2O3(p)/n-Si/BaOxFy/LiF/Ca:Al/Al 0.626 39.2 83.5 20.5 [370]
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729 mV and a contact resistivity of 65 mΩ⋅cm2, resulting in a PCE of 
21.4 % with a Voc of 725 mV and a FF of 79.2 %.On the other hand, 
organic materials such as PEDOT:PSS, P3HT, and TAPC have been 
studied as HTLs, with PEDOT:PSS being the most extensively researched
[95]. As shown in Fig. 5e, PEDOT:PSS is a hole-conducting polymer 
wherein the conductive constituents of PEDOT are effectively dispersed 
within the water-soluble insulating polymer matrix of PSS[432]. The 
PEDOT molecule, with a molecular weight (MW) of approximately 
1–2.5 kDa, is hydrophobic, whereas the PSS molecule (MW ~400 kDa) 
is hydrophilic. These molecules adhere to each other through Coulomb 
attraction, forming PEDOT:PSS molecules[255]. As HTL in HJT solar 
cells, the conductivity of PEDOT:PSS significantly influences the device 
performance. The pristine PEDOT:PSS solution exhibits a conductivity 
below 1 S cm− 1, which can be enhanced to approximately 1000 S cm− 1 

through the addition of cosolvents such as dimethyl sulfoxide (DMSO) or 
ethylene glycol (EG). Furthermore, secondary treatment methods can 
further increase the conductivity of PEDOT:PSS to several thousand S 
cm− 1 by separating the conductive PEDOT from the insulating PSS 
component[433–436]. For instance, Shirai and co-workers demon
strated that the addition of p-toluenesulfonic acid to PEDOT:PSS pro
motes phase separation between PEDOT and PSS, leading to enhanced 
conductivity of the PEDOT:PSS film[433]. Consequently, the PCE of HJT 
solar cells improved from 12 % to 14 %. Leung and co-workers inte
grated silver nanowires into the PEDOT:PSS film, which significantly 
reduced the sheet resistance of the film and boosted the PCE of the HJT 
solar cell to 15 %[437]. In addition to the conductivity, the WF of 
PEDOT:PSS also affects the device performance of HJT solar cells. As 
reported, there are typically two methods to enhance the WF of PEDOT: 
PSS films, including modifying the PEDOT:PSS solution by incorporating 
foreign materials and depositing high-WF materials onto the PEDOT:PSS 
film as bilayer[285,438–440]. Sun and co-workers added perfluorinated 
ionomer (PFI) into the PEDOT:PSS film, which increased the WF of the 
film by 0.2 eV, resulting in a PCE enhancement by about 20 %[441]. In 
another investigation, they found that the deposition of an organic 
molecule, 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile 
(HAT-CN), onto PEDOT:PSS films increased the work function of 
PEDOT:PSS from 5.0 eV to 5.4 eV. [G7–361] Sturm and co-workers 
inserted P3HT film between Si and PEDOT:PSS. This integration 
served to impede the transfer of electrons to the PEDOT:PSS film, 
effectively reducing the dark current[442]. On the other hand, Yu and 
co-workers introduced an organic compound known as 1,1-bis[(di-4-to
lylamino)phenyl]cyclohexane (TAPC) between Si and PEDOT:PSS. This 
resulted in an enhancement of carrier lifetime, leading to an improved 
PCE of 13 %[443]. Likewise, the insertion of an electron-blocking ma
terial, N,N’-bis(3-methylphenyl)-N,N’-diphenylbenzidine, between Si 
and PEDOT:PSS demonstrated similar effects to those observed with 
P3HT or TAPC[444]. To date, the highest reported PCE for HJT solar 
cells based on PEDOT:PSS is 20.6 % by Zielke and co-workers, attributed 
to the use of modified PEDOT:PSS dispersion and optimal pre-treated 
c-Si surfaces[445].

As summarized in Table 4, significant advancements have been 
achieved in selective layers based on organic materials for HJT solar 
cells. So far, there is a disagreement about the balance between so
phisticated methods like atomic layer deposition (ALD) for creating 
high-quality passivation layers versus simpler, more scalable techniques 
(e.g., sputtering or chemical vapor deposition) that might be less 
effective but easier for mass production. Given that many organic se
lective layers can be produced using straightforward solution-based or 
evaporation techniques, this suggests a cost-effective pathway for HJT 
solar cell fabrication. However, the issue of device stability remains 
unresolved. According to current research findings, degradation can be 
attributed to the inherent instability of organic materials and contact 
interfaces. Unlike conventional Si solar cells, which typically offer a 
twenty-five-year guarantee in commercial production, organic materials 
are more susceptible to environmental factors such as heat, light, 
moisture, and oxygen. For instance, PEDOT:PSS films are notably 

Table 3 
Summary of device performance using other metal compounds as selective 
contacts in chronological order.

Publication 
time

Device structure Voc 
(V)

Jsc 
(mA/ 
cm2)

FF 
(%)

PCE 
(%)

Ref

2013 Al/AZO/ZnS/p-c- 
Si/Al

0.319 29.11 39.31 3.66 [398]

2013 Al/AZO/ZnS/p-c- 
Si/Al

0.279 23.83 4.79 2.72 [394]

2013 In/SnSe/n-c-Si/ 
Al

0.425 17.23 44 6.44 [399]

2014 Al/MoS2/p-c-Si/ 
Cr/Ag

0.41 22.36 57.26 5.23 [400]

2016 Ti/Ag/ITO/CdS/ 
n-c-Si/Al

0.308 13.92 42.7 1.83 [401]

2017 ITO/a-Si:H(p)/p- 
BaSi2/n-c-Si/Al

0.47 35.8 60 9.9 [402]

2017 Ag/HAZO/n- 
ZnS/p-c-Si/Al

0.517 31.05 55 8.83 [403]

2018 Ag/ITO/BaSi2/n- 
c-Si/Al

0.47 35.8 60 9.9 [404]

2018 Ag/ITO/MoOx/n- 
c-Si/a-Si:H(n)/ 
GaP/ITO/Ag

0.598 34.3 69 14.1 [299]

2018 Ag/ITO/ZnS/p-c- 
Si/WO3/Ag

0.525 33.75 61.73 10.94 [301]

2018 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/p-c- 
Si/n+/GaP/ITO/ 
Ag

0.616 31.3 61 11.8 [405]

2019 Ag/PEDOT:PSS/ 
n-c-Si/Ba(OH)2/ 
Ag/Al

0.64 38.5 74 18.2 [406]

2019 Ag/ITO/CdS/n-c- 
Si/MoOx/Ag

0.483 35.45 71.62 12.29 [318]

2019 Ag/ITO/MoS2/a- 
Si:H(i)/p-c-Si/a- 
Si:H(i)/μc-SiOx:H 
(p)/ITO/Ag

0.222 31.13 54.35 3.76 [407]

2020 Cr/Pd/Ag/Al2O3/ 
SiNx/p+/n-c-Si/ 
TiN/Al/Ag

0.607 38.7 80.1 18.7 [408]

2020 Ag/ITO/MoOx/ 
MoS2/a-Si:H(i)/ 
n-c-Si/a-Si:H(i)/ 
μc-SiOx:H(n)/ 
ITO/Ag

0.288 31.25 60.72 5.47 [409]

2021 Ag/SiNx/Al2O3/ 
p+/n-c-Si/a-Si:H 
(i)/LiAc/Ag

0.644 39 79 19.8 [410]

2021 Ag/ITO/n-ZnS/p- 
c-Si/WO3/Ag

0.529 33.55 61.17 10.86 [348]

2021 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/LiFx/ 
ITO/Ag

0.69 33.32 74.62 17.16 [411]

2022 Au/ZnO⋅SnO2/p- 
c-Si/CuSCN/Au

0.592 19.54 35.43 4.1 [412]

2022 Ag/ITO/a-SiNx: 
H/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/LiF/ 
Ti/Al

0.717 41.83 78.68 23.61 [413]

2023 Ag/ITO/a-Si:H 
(p)/a-Si:H(i)/n-c- 
Si/a-Si:H(i)/LiF/ 
Ti/Al

0.716 38.35 80.65 22.14 [414]

2023 Ag/SiNx/MoS2/ 
SiOx/n-Si/p-c-Si/ 
Al

0.602 35.43 67.89 14.6 [415]

2023 Ag/SiNx/a-Si:H 
(n)/c-Si(p)/ 
Al3+-I2:CuI/Ag

0.619 39.7 74.28 18.28 [416]
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Table 4 
Summary of device performance using organic materials as selective contacts in chronological order.

Publication time Device structure Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Ref

2008 Au/DOPNA/p-c-Si/Al 0.29 4.83 33 5.74 [447]
2012 Ag/PEDOT:PSS/P3HT/n-c-Si/Al 0.4 30 48 6.3 [448]
2012 Ag/PEDOT:PSS+Zonly/n-c-Si/Al 0.541 29.2 71.8 11.34 [449]
2012 Ag/GO/PEDOT:PSS/n-c-Si/Al 0.52 27.99 0.63 9.27 [450]
2012 Ag/PEDOT:PSS:GO/n-c-Si/Al 0.548 28.9 67.5 10.7 [451]
2013 Ag/PEDOT:PSS:MeOH:EG/n-c-Si/Al 0.548 28.79 71.1 11.23 [452]
2013 Ag/PEDOT:PSS/TAPC/n-c-Si/Al 0.54 34.81 67.08 12.54 [453]
2014 SiNx/Al/Al2O3/n+/n-c-Si/SiOx/PEDOT:PSS/Al 0.668 41.1 83 22.8 [454]
2014 Ag/MoO3/PEDOT:PSS/n-c-Si/Liq/Al 0.63 29.2 74.9 13.8 [285]
2014 Ag/PEDOT:PSS/SiOx/n-c-Si/Ti/Ag 0.5 33.74 64.73 11 [455]
2015 GO/AgNWs/PEDOT:PSS/n-c-Si/Al 0.601 28.4 78.4 13.3 [456]
2015 Ag/PEDOT:PSS/n-c-Si/n+/Ag 0.564 32.1 75.2 13.63 [457]
2015 TiO2/Ag/PEDOT:PSS/n-c-Si/InGa 0.62 34.3 73 15.5 [433]
2016 Ag/PEDOT:PSS/n-c-Si/PFN/Al 0.582 29.57 77.56 13.35 [458]
2016 Al/C60/p-c-Si/Al 0.5 25.09 67 8.4 [459]
2016 MoO3/Ag/PEDOT:PSS/SiOx/n-c-Si/a-Si:H(i)/a-Si:H(n)/Al 0.532 34.9 66.97 12.43 [460]
2016 Ag/PEDOT:PSS/n-c-Si/InGa 0.53 35.6 67 12.5 [461]
2016 Ag/PEDOT:PSS/TAPC/p-PFO/n-c-Si/Al 0.553 32.41 70.13 12.56 [462]
2016 Ag/GOPs/PEDOT:PSS/n-c-Si/Al 0.64 30.2 72.8 14.1 [463]
2016 Ag/PEDOT:PSS/n-c-Si/PEO/Al 0.563 28.65 76.22 12.29 [420]
2016 Ag/Nafion/PEDOT:PSS/n-c-Si/InGa 0.604 32.7 70.6 14 [464]
2016 Cu/PEDOT:PSS/n-c-Si/Al 0.49 34 59 9.1 [465]
2016 Ag/PEDOT:PSS/n-c-Si/Al 0.58 28.57 69.2 11.46 [466]
2016 Ag/PEDOT:PSS+Au NP/n-c-Si/Al 0.622 27.7 74.6 12.85 [467]
2016 Glass/ITO/PEDOT:PSS/LPD-TiO2/n-c-Si/Al 0.63 34.15 65 14.7 [468]
2016 CuI/Ag/PEDOT:PSS/SiOx/n-c-Si/InGa 0.656 28 78.1 14.3 [373]
2016 Ag/PEDOT:PSS/n-c-Si/a-Si:H/a-SiC:H/Ti/Al 0.56 30.54 49.7 8.5 [469]
2016 Au/Graphene/GQDs/SiO2/n-c-Si/InGa 0.58 33.93 63 12.35 [470]
2016 Ag/PEDOT:PSS/n-c-Si/n+/Al 0.472 33.37 56.52 9.37 [471]
2017 Ag/PEDOT:PSS/n-c-Si/a-Si:H(i)/a-Si:H(n)/Al 0.634 35.4 72.22 16.21 [472]
2017 Ag/PEDOT:PSS/n-c-Si/TiOx/Al 0.643 30.7 72.4 14.3 [288]
2017 Ag/DEP/PEDOT:PSS/n-c-Si/a-Si:H(i)/a-Si:H(n)/Al 0.634 36.5 70 16.2 [473]
2017 Ag/PEDOT:PSS/n-c-Si/F-N2200/Al 0.635 31.1 73.3 14.5 [424]
2017 Ag/PEDOT:PSS/n-c-Si/PCBM/Al 0.646 31.37 74.25 14.9 [423]
2017 Ag/PEDOT:PSS-CNPs/n-c-Si/Al 0.614 26.34 73.93 11.95 [474]
2017 Ag/PEDOT:PSS/P(VDF-TrFE)/n-c-Si/Ti/Au 0.583 30.8 65.4 11.73 [475]
2017 Ag/PEDOT:PSS/SiOx/n-c-Si/a-Si:H(i)/a-Si:H(n)/ITO/Ti/Ag 0.663 31.9 70 14.8 [476]
2017 Ag/PEDOT:PSS/n-c-Si/TiO2/Al 0.62 31 75.96 14.6 [294]
2017 CuI/Ag/PEDOT:PSS/n-c-Si/PTB7-NBr/Al 0.638 32.8 76.5 16 [425]
2018 Ag/AgNW/PEDOT:PSS/n-c-Si/Al 0.56 27.07 72.15 11.07 [477]
2018 Ag/SiNx/a-Si:H(n)/p-c-Si/PEDOT:PSS/Ag 0.656 38.7 79 20.2 [478]
2018 Ag/PEDOT:PSS/n-c-Si/AZO/Al 0.641 27.6 78 13.6 [298]
2018 Ag/PEDOT:PSS/n-c-Si/Al 0.628 28.9 74.5 13.6 [479]
2018 Ag/PEDOT:PSS/n-c-Si/SiOx/Mg/Al 0.61 33.4 73.5 15 [480]
2018 Ag/PEDOT:PSS/SiOx/n-c-Si/InGa 0.607 33.72 65.01 13.31 [481]
2018 Ag/HC-PEDOT:PSS/HW-PEDOT:PSS/n-c-Si/Ga-In 0.64 26.27 75.5 12.69 [482]
2017 TAPC/Ag/PEDOT:PSS/n-c-Si/Ag/Ba(OH)2/Al 0.623 27.4 73.3 12.5 [483]
2018 Au/MnTPPCl/n-c-Si/Al 0.438 6.28 33.6 4.62 [484]
2018 Ag/HC-PEDOT:PSS/HA-PEDOT:PSS/n-c-Si/CPTA/Al 0.632 34.7 76.3 16.73 [417]
2018 Ag/AgNW/PEDOT:PSS/SiOx/n-c-Si/Al 0.622 31.05 78 15.1 [437]
2018 Ag/PEDOT:PSS/n-c-Si/QH/Al 0.635 27.16 77.07 13.29 [485]
2018 Ag/PEDOT:PSS/n-c-Si/rubrene:DMSO/Ag 0.609 28.2 69.1 11.9 [486]
2018 Ag/PEDOT:PSS/n-c-Si/SnO2/Ag 0.593 33.16 72 14.16 [309]
2018 Ag/PEDOT:PSS/n-c-Si/a-Si:H(i)/Li-ZnO/Al 0.623 33.58 72.38 15.14 [311]
2019 Ag/IWO/a-Si:H(n)/a-Si:H(i)/n-c-Si/PEDOT:PSS/Ag 0.633 36.6 70.2 16.3 [487]
2019 Ag/PEDOT:PSS/n-c-Si/MgOx/Al 0.623 33.8 73.9 15.5 [317]
2019 Ag/PEDOT:PSS/n-c-Si/TiO2/LiFx/Al 0.626 31.9 75.6 15.1 [316]
2019 Ag/PEDOT:PSS/n-c-Si/SiOx/EDTA-SnO2/Ag 0.562 28.8 71.2 11.52 [324]
2019 Al/SiNx/AlOx/p-c-Si/PEDOT:PSS/Ag 0.66 38.5 80 20.4 [488]
2020 Ag/PEDOT:PSS/n-c-Si/TiO2/Ag/Al 0.616 28.5 70.9 13.08 [332]
2020 Ag/SiOx/F-SWCNT/n-c-Si/InGa 0.599 31.2 70.9 13.3 [489]
2020 Ag/ITO/a-Si:H(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/b-PEI/Al 0.72 37 72.9 19.4 [418]
2020 Ag/PEDOT:PSS/n-c-Si/PCBM/Al 0.618 31.75 66.49 13.12 [490]
2020 Al/Graphene/nc-SiOx(p)/a-Si:H(i)/n-c-Si/a-Si:H(i)/nc-SiOx(n)/AZO/Al 0.612 25.3 55.8 8.65 [491]
2020 Ag/PEDOT:PSS-MoOx/n-c-Si/PC61BM/Al 0.627 32.41 68.01 13.82 [492]
2020 Ag/PEDOT:PSS-CNT/n-c-Si/Al 0.589 25.3 60.79 9.05 [493]
2021 Ag/PEDOT:PSS/SiNWs/n-c-Si/PCBM/Mg/Al 0.65 34.8 80.1 18.12 [494]
2021 Ag/PEDOT:PSS+ITO-NPs/n-c-Si/InGa 0.589 33.66 60.54 12.01 [495]
2021 Au/TTBTP/n-c-Si/Al 0.68 8.06 43.3 2.38 [496]
2021 Ag/PEDOT:PSS+GOPs/n-c-Si/TiN/Al 0.66 33 69.03 15.01 [497]
2021 Ag/PEDOT:PSS/n-c-Si/Al 0.521 32.1 66.2 11.1 [498]
2021 Ag/PEDOT:PSS/MWCNTs&PDA/n-c-Si/PC61BM/Al 0.637 34.76 56.41 12.49 [499]
2021 Ag/GO/PEDOT:PSS/n-c-Si/In:Ga 0.648 28.89 73.5 13.76 [500]
2022 Ag/HQ-PEDOT:PSS/BQ/n-c-Si/LiF/Al 0.618 27.7 61.8 10.6 [501]

(continued on next page)
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vulnerable to degradation from UV light and oxygen exposure[446]. 
When exposed to oxygen, sulfur atoms within the thiophene rings 
transform into insulating sulfoxide and sulfone structures. This oxida
tion process is expedited by UV light, exacerbating the degradation. As a 
result, the increased resistivity of the film imposes limitations on device 
efficiency. Further research dedicated to investigating the stability of 
organic materials in this domain is warranted.

5. Conclusion

In conclusion, HJT solar cells represent a promising avenue for 
overcoming the limitations of homojunction SSCs, such as high carrier 
recombination at the rear surface and the need for heavy bulk doping, to 
get us closer to the fundamental efficiency limit of silicon solar cells. By 
incorporating passivating selective contacts on both sides of the c-Si 
wafer, HJT technology offers improved surface passivation and reduced 
recombination rates, leading to higher Voc and enhanced PCE. Recent 
advancements in passivating selective contacts for HJT SSCs have shown 
remarkable progress, as evidenced by the increasing number of publi
cations and the steady improvement in PCE. Innovative approaches, 
such as the a-SiOx:H(i) passivation layers, DASH structure, and the 
integration of SAMs, have broadened the scope of materials available for 
passivating selective contacts. The comprehensive survey presented in 
this paper provides valuable insights into the fundamental mechanisms, 
material modifications, and performance evaluations of passivating se
lective contacts for HJT SSCs. By systematically exploring the evolution 
of selective layers and highlighting recent advancements, this study 
contributes to the ongoing development of HJT technology.

Herein, in the context of passivating selective contacts in HJT solar 
cells, we also outline current challenges in the field and possible di
rections for future research:

1) Addressing the instability of passivating selective contacts and their 
compatibility with adjacent layers is crucial for advancing solar cell 
technology. This issue often arises due to interfacial reactions or 
processing constraints that can compromise device performance and 
longevity. For newly developed selective layers, such as those based 
on TMOs and organic materials, while they show promise for high 
PCE, there is a pressing need for comprehensive evaluations of their 
long-term stability. These materials can be sensitive to environ
mental factors, which can lead to degradation over time. To mitigate 
the risk of air contamination, which can adversely affect these sen
sitive materials, it is essential to employ thin-film deposition tech
niques that operate in controlled, inert environments. Moreover, 
incorporating interlayers that have demonstrated both thermody
namic stability and suitable band alignment can help address 

compatibility issues. These interlayers act as buffers, preventing 
undesirable reactions between the passivating layers and adjacent 
layers. They also ensure proper charge transport and minimize en
ergy losses at interfaces [50].

2) There remains a critical need to develop passivating selective con
tacts with optimized electronic properties to enhance the perfor
mance of solar cells. Specifically, the challenge lies in achieving 
sufficiently low EA for the electron-selective contact and high WF for 
the hole-selective contact. These properties are essential for ensuring 
efficient charge separation and collection at the respective elec
trodes. To address these challenges, advanced doping strategies are 
one promising approach. Doping can modify the electronic proper
ties of the materials, potentially lowering the EA for electron- 
selective contacts or increasing the WF for hole-selective contacts. 
This involves introducing dopants that can fine-tune the energy 
levels within the material to better match the requirements for effi
cient charge extraction. Another approach is the chemical potential 
tuning of relevant elements, such as oxygen. By adjusting the con
centration of these elements or their chemical states within the 
contact materials, it is possible to optimize the electronic band 
structure and improve the contact properties. This strategy may 
involve sophisticated techniques such as controlled oxidation or 
alloying, which require further development to fully realize their 
potential. In addition to these strategies, the exploration of new 
materials is crucial. Ternary and quaternary metal compounds offer a 
rich field of possibilities, as their complex compositions can provide 
tailored band alignments and high electrical conductivities. For 
example, materials combining multiple metal elements may exhibit 
synergistic effects that enhance their electronic properties beyond 
those of binary compounds. To fully leverage these advanced mate
rials, more in-depth investigation is needed. This includes studying 
their fundamental properties, processing techniques, and in
teractions with other layers in the solar cell structure. Comprehen
sive research into these materials could lead to the discovery of new 
candidates that offer improved performance and stability. Overall, 
continued development in these areas—advanced doping tech
niques, chemical potential tuning, and exploration of complex metal 
compounds—will be essential for achieving optimal passivating se
lective contacts. These advancements will contribute to higher effi
ciency and more reliable solar cell technologies, addressing some of 
the current limitations in the field.

3) A thorough understanding of the charge transport mechanism in 
passivating selective contacts is still lacking, which limits the opti
mization of these materials for high-performance solar cells. For 
example, selective materials such as lithium fluoride (LiFx) are 
known for their promising passivating properties. However, the 

Table 4 (continued )

Publication time Device structure Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Ref

2021 Au/PEDOT:PSS/n-c-Si/In-Ga 0.515 24.16 44.12 5.49 [502]
2021 Ag/PEDOT:PSS/n-Si/PC61BM/Al 0.645 32.81 63.56 13.44 [503]
2022 Ag/PEDOT:(PSS+IBTEO)/n-c-SiNWs/PCBM/Mg/Al 0.649 34.8 80.5 18.2 [504]
2022 Ag/(P/Se-WOx):(PEDOT:PSS)/n-c-Si/PC61BM/Al 0.633 33.51 6564 13.64 [505]
2022 Ag/ITO/a-Si:H(n)/a-Si:H(i)/n-c-Si/GO:Nafion/Ag 0.670 40 80.6 21.6 [506]
2022 Al/MoS2/h-BN/p-c-Si/Ag 0.61 32.2 62 11.83 [507]
2022 Ag/ITO/a–Si:H(n)/a–Si:H(i)/n-c-Si/MXene:Nafion/eAg 0.556 38.64 66.18 14.21 [508]
2023 Ag/doped-PEDOT:PSS/n-c-Si/Al 0.64 33.88 64.33 14.46 [509]
2023 Ag/TsOH-SWCNT/SiOx/n-c-Si/In/Ga 0.623 35.5 80 17.7 [510]
2023 Ag/ITO/V2O5/n-c-Si/PAMAM/Al 0.6 31.7 76.2 14.5 [511]
2023 Ag/PEDOT:PSS/V2Ox/n-c-Si 0.593 29.97 71.12 12.64 [361]
2023 Ag/PEDOT:PSS/n-c-Si/Al 0.497 7.71 67.8 5.53 [512]
2023 Ag/PEDOT:PSS/p-c-Si/ZnO/Ag 0.56 25.99 67.1 9.77 [513]
2023 Ag/PEDOT:PSS/SiOx/n-c-Si/In:Ga 0.522 28.75 69.45 10.42 [514]
2023 Ag/PEDOT:PSS/PEDOT:PSS-Nafion/n-c-Si/In:Ga 0.69 29.65 70.77 12.33 [515]
2023 Ag/PEDOT:PSS/n-c-Si/In:Ga 0.556 24.26 65.87 8.89 [516]
2023 Al/2PACz/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(p)/ITO/Ag grid 0.725 37.3 79.2 21.4 [431]
2024 Ag/PEDOT:PSS-Nafion/PEDOT:PSS-TX/n-Si/SiO2/n+-poly-Si/Ag 0.636 31.1 69.1 13.7 [517]
2024 Ag/PEDOT:PSS/n-Si/In:Ga 0.541 32.13 61.96 10.78 [518]
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mechanism by which carriers traverse through such materi
als—especially when the material thickness exceeds 10 nm—is not 
yet fully understood[381]. In particular, the role of tunneling in 
these processes remains unclear and requires more detailed investi
gation. The current theoretical models, including those that involve 
tunneling, often fall short of explaining how carriers can effectively 
move through thicker layers of these materials. Tunneling mecha
nisms, while useful for very thin layers, may not fully account for the 
observed behavior in thicker films. This discrepancy suggests that 
additional factors or mechanisms might be at play that have not been 
fully accounted for in existing models. Therefore, it is crucial to 
conduct a meticulous examination of carrier transport mechanisms 
under various conditions to bridge this knowledge gap. This includes 
studying how different factors, such as material thickness, temper
ature, and applied electric fields, influence carrier movement. 
Advanced experimental techniques, such as time-resolved spectros
copy or depth-resolved measurements, could provide insights into 
the dynamics of carrier transport in these materials. By gaining a 
deeper understanding of these mechanisms, researchers can better 
exploit the intrinsic properties of passivating selective materials. This 
knowledge will enable the design of innovative contact structures 
that optimize carrier selectivity and enhance overall device perfor
mance. For instance, insights into how carriers navigate through 
different thicknesses of passivating layers could lead to the devel
opment of multilayer structures that improve charge extraction ef
ficiency and minimize losses. In summary, advancing our 
comprehension of charge transport mechanisms is essential for 
pushing the boundaries of passivating selective contact technology. 
By exploring new theoretical and experimental approaches, we can 
unlock the full potential of these materials.

Given these ongoing advancements, the potential for HJT solar cells 
to surpass a PCE of 28 % is within reach. Continued research and 
development in passivating selective contacts will be instrumental in 
achieving this milestone. By addressing current limitations and 
leveraging new technologies, researchers and manufacturers are poised 
to significantly improve the efficiency and performance of HJT solar 
cells, making them a leading choice for high-performance photovoltaic 
applications.
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M. Despeisse, F.-J. Haug, P. Löper, C. Ballif, Silicon-rich silicon carbide hole- 
selective rear contacts for crystalline-silicon-based solar cells, ACS Appl. Mater. 
Interfaces 8 (2016) 35660–35667, https://doi.org/10.1021/acsami.6b12714.

[161] L. Mazzarella, S. Kirner, O. Gabriel, S.S. Schmidt, L. Korte, B. Stannowski, B. Rech, 
R. Schlatmann, Nanocrystalline silicon emitter optimization for Si-HJ solar cells: 
Substrate selectivity and CO2 plasma treatment effect, Phys. Status Solidi (a) 214 
(2017) 1532958, https://doi.org/10.1002/pssa.201532958.

[162] M. Agarwal, A. Pawar, N. Wadibhasme, R. Dusane, Controlling the c-Si/a-Si:H 
interface in silicon heterojunction solar cells fabricated by HWCVD, Sol. Energy 
144 (2017) 417–423, https://doi.org/10.1016/j.solener.2017.01.039.

[163] S. Li, Z. Shi, Z. Tang, X. Li, Study on the hydrogen doped indium oxide for silicon 
heterojunction solar cell application, J. Alloy. Compd. 705 (2017) 198–204, 
https://doi.org/10.1016/j.jallcom.2017.02.133.

[164] G. Dong, Y. Zhou, H. Zhang, F. Liu, G. Li, M. Zhu, Passivation of high aspect ratio 
silicon nanowires by using catalytic chemical vapor deposition for radial 

Y. Zhang et al.                                                                                                                                                                                                                                   Nano Energy 131 (2024) 110282 

24 

https://doi.org/10.1016/j.tsf.2005.12.166
https://doi.org/10.1143/JJAP.46.1
https://doi.org/10.1016/j.solmat.2007.09.007
https://doi.org/10.1016/j.solmat.2007.09.007
https://doi.org/10.1016/j.solmat.2007.11.002
https://doi.org/10.1088/0022-3727/41/18/185107
https://doi.org/10.1088/0022-3727/41/18/185107
https://doi.org/10.1143/JJAP.47.8452
https://doi.org/10.1143/JJAP.47.8452
https://doi.org/10.1016/j.solmat.2008.10.020
https://doi.org/10.1016/j.solmat.2008.11.027
https://doi.org/10.1016/j.solmat.2008.11.027
https://doi.org/10.1016/j.tsf.2009.03.119
https://doi.org/10.1016/j.tsf.2009.03.119
https://doi.org/10.1016/j.cap.2009.01.010
https://doi.org/10.1016/j.cap.2009.01.010
https://doi.org/10.1088/1674-4926/30/8/084010
https://doi.org/10.1088/1674-4926/30/8/084010
https://doi.org/10.1143/JJAP.48.101603
https://doi.org/10.1063/1.3460917
https://doi.org/10.1149/1.3534202
https://doi.org/10.1149/1.3534202
https://doi.org/10.1016/j.solmat.2010.11.013
https://doi.org/10.1016/j.solmat.2010.11.013
https://doi.org/10.1143/JJAP.50.082301
https://doi.org/10.1143/JJAP.50.082301
https://doi.org/10.1149/1.3607981
https://doi.org/10.1002/pip.1189
https://doi.org/10.1063/1.4721642
https://doi.org/10.1016/j.solmat.2013.03.024
https://doi.org/10.1016/j.solmat.2013.05.044
https://doi.org/10.1016/j.solmat.2013.05.044
https://doi.org/10.1016/j.vacuum.2013.07.004
https://doi.org/10.1016/j.vacuum.2013.07.004
https://doi.org/10.1016/j.jtice.2013.01.027
https://doi.org/10.1016/j.jtice.2013.01.027
https://doi.org/10.1016/j.solmat.2013.11.031
https://doi.org/10.1016/j.materresbull.2014.05.003
https://doi.org/10.1016/j.apsusc.2018.12.239
https://doi.org/10.1063/1.4905013
https://doi.org/10.1063/1.4905013
https://doi.org/10.1109/TPS.2014.2333514
https://doi.org/10.1109/TPS.2014.2333514
https://doi.org/10.1002/pip.2570
https://doi.org/10.1166/jnn.2014.10123
https://doi.org/10.1002/pssr.201409546
https://doi.org/10.1002/pssr.201409546
https://doi.org/10.1109/JPHOTOV.2015.2450993
https://doi.org/10.1109/JPHOTOV.2015.2450993
https://doi.org/10.1063/1.4936196
https://doi.org/10.1063/1.4936196
https://doi.org/10.1016/j.solmat.2015.09.033
https://doi.org/10.1016/j.solmat.2015.09.033
https://doi.org/10.1016/j.tsf.2015.11.023
https://doi.org/10.1016/j.tsf.2015.11.023
https://doi.org/10.1021/acsami.6b00981
https://doi.org/10.1002/pssa.201533024
https://doi.org/10.1002/pssa.201533024
https://doi.org/10.1109/JPHOTOV.2016.2553779
https://doi.org/10.1109/JPHOTOV.2016.2553779
https://doi.org/10.1063/1.4966941
https://doi.org/10.1039/C6NR04960E
https://doi.org/10.1039/C6NR04960E
https://doi.org/10.1021/acsami.6b12714
https://doi.org/10.1002/pssa.201532958
https://doi.org/10.1016/j.solener.2017.01.039
https://doi.org/10.1016/j.jallcom.2017.02.133


heterojunction solar cell application, RSC Adv. 7 (2017) 45101–45106, https:// 
doi.org/10.1039/C7RA08343B.

[165] M. Pomaska, A. Richter, F. Lentz, T. Niermann, F. Finger, U. Rau, K. Ding, Wide 
gap microcrystalline silicon carbide emitter for amorphous silicon oxide 
passivated heterojunction solar cells, Jpn. J. Appl. Phys. 56 (2017) 022302, 
https://doi.org/10.7567/JJAP.56.022302.

[166] Y. Kuang, B. Macco, B. Karasulu, C.K. Ande, P.C.P. Bronsveld, M.A. Verheijen, 
Y. Wu, W.M.M. Kessels, R.E.I. Schropp, Towards the implementation of atomic 
layer deposited In2O3:H in silicon heterojunction solar cells, Sol. Energy Mater. 
Sol. Cells 163 (2017) 43–50, https://doi.org/10.1016/j.solmat.2017.01.011.

[167] T. Krajangsang, S. Inthisang, J. Sritharathikhun, A. Hongsingthong, A. Limmanee, 
S. Kittisontirak, P. Chinnavornrungsee, R. Phatthanakun, K. Sriprapha, An 
intrinsic amorphous silicon oxide and amorphous silicon stack passivation layer 
for crystalline silicon heterojunction solar cells, Thin Solid Films 628 (2017) 
107–111, https://doi.org/10.1016/j.tsf.2017.03.010.

[168] H. Zhang, K. Nakada, M. Konagai, Effects of epitaxial growth on the optimum 
condition of intrinsic amorphous silicon oxide buffer layers for silicon 
heterojunction solar cells, Thin Solid Films 628 (2017) 214–220, https://doi.org/ 
10.1016/j.tsf.2017.03.040.

[169] D.-W. Kang, P. Sichanugrist, H. Zhang, M. Konagai, Wide-bandgap p-type 
microcrystalline silicon oxycarbide using additional trimethylboron for silicon 
heterojunction solar cells, Prog. Photovolt.: Res. Appl. 25 (2017) 384–389, 
https://doi.org/10.1002/pip.2875.

[170] M. Gao, Y. Wan, Y. Li, B. Han, W. Song, F. Xu, L. Zhao, Z. Ma, Effective 
passivation and tunneling hybrid a-SiOx(In) layer in ITO/n-Si heterojunction 
photovoltaic device, ACS Appl. Mater. Interfaces 9 (2017) 17565–17575, https:// 
doi.org/10.1021/acsami.7b01447.

[171] J. Yu, J. Zhou, J. Bian, L. Zhang, Y. Liu, J. Shi, F. Meng, J. Liu, Z. Liu, Improved 
opto-electronic properties of silicon heterojunction solar cells with SiOx/ 
Tungsten-doped indium oxide double anti-reflective coatings, Jpn. J. Appl. Phys. 
56 (2017) 08MB09, https://doi.org/10.7567/JJAP.56.08MB09.

[172] X. Yang, J. Chen, W. Liu, F. Li, Y. Sun, Single-side heterojunction solar cell with 
microcrystalline silicon oxide emitter and diffused back surface field, Phys. Status 
Solidi (a) 214 (2017) 1700193, https://doi.org/10.1002/pssa.201700193.

[173] G. Nogay, J. Stuckelberger, P. Wyss, E. Rucavado, C. Allebé, T. Koida, M. Morales- 
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G. Yang, Z. Yao, M. Zeman, R. Santbergen, L. Mazzarella, O. Isabella, Achieving 
23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin 
MoOx hole collector layer via tailoring (i)a-Si:H/MoOx interface, Prog. 
Photovolt.: Res. Appl. 31 (2023) 1245–1254, https://doi.org/10.1002/pip.3638.

[360] M. Wang, G. Wang, W. Gong, S. Cheng, L. Zhao, X. Xu, D. Gong, F. Ye, L. Mo, 
H. Diao, W. Wang, Influence of In2O3:SnO2 films at different sputtering power on 
efficiency and stability of heterojunction solar cells, Sol. Energy Mater. Sol. Cells 
253 (2023) 112229, https://doi.org/10.1016/j.solmat.2023.112229.

[361] Q. Geng, Z. Wang, Z. Liu, Y. Liu, Z. Gao, Y. Li, X. Sun, L. Chen, X. Lv, M. Li, 
Construction of V2Ox/Si heterojunction and carrier-assisted collection for high- 
efficiency silicon solar cells, Mater. Today Energy 34 (2023) 101317, https://doi. 
org/10.1016/j.mtener.2023.101317.

[362] J. Kumari, Rahul, P. Agarwal, Role of deposition parameters on optoelectronic 
properties of ITO films and its application in MoO3− x/c-Si(n) heterojunction 
solar cells, J. Mater. Sci.: Mater. Electron. 34 (2023) 1286, https://doi.org/ 
10.1007/s10854-023-10715-0.

[363] J. Ma, J. Li, W. Zheng, Y. Fu, In situ growth MoS2 quantum dots as promising 
interface materials for silicon solar cells, Mater. Sci. Semicond. Process. 165 
(2023) 107653, https://doi.org/10.1016/j.mssp.2023.107653.

[364] T. Wang, G. Yu, Y. Wei, W. Liu, W. Fu, Y. Lin, X. Wu, L. Xu, P. Lin, X. Yu, P. Wang, 
C. Cui, Solution-processed vanadium oxide by low-temperature annealing for 
silicon solar cells with hole selective contact, Mater. Sci. Semicond. Process. 165 
(2023) 107638, https://doi.org/10.1016/j.mssp.2023.107638.

[365] Z. Xu, X. Liu, J. Zhou, Y. Yan, Y. Song, Q. Huang, H. Ren, Y. Ding, X. Zhang, 
Y. Zhao, G. Hou, Aluminum and molybdenum Co-doped zinc oxide films as dual- 
functional carrier-selective contact for silicon solar cells, ACS Appl. Mater. 
Interfaces 15 (2023) 34964–34972, https://doi.org/10.1021/acsami.3c05838.

[366] R. Shafique, H. Latif, A. Sattar, S.A. Shabbir, Effect of anti-reflecting layers on 
device performance of SWCNTs/Si hetero-junction hybrid solar cells, Opt. Mater. 
143 (2023) 114215, https://doi.org/10.1016/j.optmat.2023.114215.

[367] W. Liu, W. Fu, Y. Wei, G. Yu, T. Wang, L. Xu, X. Wu, P. Lin, X. Yu, C. Cui, P. Wang, 
Exceptional hole-selective properties of Ta2O5 films via Sn4+ doping for high 
performance silicon heterojunction solar cells, Small 20 (2024) 2306666, https:// 
doi.org/10.1002/smll.202306666.

[368] J. Li, Q. Kang, Y. Wang, Z. Zhou, Z. Sun, H. Zhang, W. Lu, X. Tao, S.-T. Zhang, 
X. Chen, Z. Zheng, H. Yan, D. Li, Y. Zhang, Low oxygen content MoOx and SiOx 
Tunnel layer based heterocontacts for efficient and stable crystalline silicon solar 
cells approaching 22% efficiency, Adv. Funct. Mater. 34 (2024) 2310619, https:// 
doi.org/10.1002/adfm.202310619.

[369] M. Jeong, J. Park, Y.J. Cho, H.S. Chang, Enhancing performance of heterojunction 
silicon solar cells through atomic-layer-deposited MoOx hole contact and atomic- 
layer-deposited AlZnO layer, Vacuum 222 (2024) 113000, https://doi.org/ 
10.1016/j.vacuum.2024.113000.

[370] C. Xing, W. Gu, Z. Xiang, X. Lou, X. Wang, X. Zhang, Y. Wang, X. Yang, B. Sun, 
Post-annealing-free BaOxFy/LiF-based stack electron-selective contacts for high 
efficiency crystalline silicon solar cells featuring ultra-low contact resistivity, 
Chem. Eng. J. 481 (2024) 148568, https://doi.org/10.1016/j.cej.2024.148568.

[371] M. Feifel, J. Ohlmann, J. Benick, T. Rachow, S. Janz, M. Hermle, F. Dimroth, 
J. Belz, A. Beyer, K. Volz, D. Lackner, MOVPE Grown Gallium Phosphide–Silicon 
Heterojunction Solar Cells, IEEE J. Photovolt. 7 (2017) 502–507, https://doi.org/ 
10.1109/JPHOTOV.2016.2642645.

[372] A.N. Fioretti, M. Boccard, A.C. Tamboli, A. Zakutayev, C. Ballif, Nitride layer 
screening as carrier-selective contacts for silicon heterojunction solar cells, AIP 
Conf. Proc. 1999 (2018) 040007, https://doi.org/10.1063/1.5049270.

[373] J. He, P. Gao, Z. Ling, L. Ding, Z. Yang, J. Ye, Y. Cui, High-efficiency silicon/ 
organic heterojunction solar cells with improved junction quality and interface 
passivation, ACS Nano 10 (2016) 11525–11531, https://doi.org/10.1021/ 
acsnano.6b07511.

[374] W. Lin, W. Wu, Q. Xie, Z. Liu, K. Qiu, L. Cai, Z. Yao, L. Meng, B. Ai, Z. Liang, 
H. Shen, Conductive cuprous iodide hole-selective contacts with thermal and 
ambient stability for silicon solar cells, ACS Appl. Mater. Interfaces 10 (2018) 
43699–43706, https://doi.org/10.1021/acsami.8b16883.

[375] Z. Sun, C. Yi, Z. Hameiri, S.P. Bremner, Investigation of the selectivity-mechanism 
of copper (I) sulfide (Cu2S) as a dopant-free carrier selective contact for silicon 
solar cells, Appl. Surf. Sci. 555 (2021) 149727, https://doi.org/10.1016/j. 
apsusc.2021.149727.

[376] Y. Wan, C. Samundsett, J. Bullock, T. Allen, M. Hettick, D. Yan, P. Zheng, 
X. Zhang, J. Cui, J. McKeon, A. Javey, A. Cuevas, Magnesium fluoride electron- 
selective contacts for crystalline silicon solar cells, ACS Appl. Mater. Interfaces 8 
(2016) 14671–14677, https://doi.org/10.1021/acsami.6b03599.

[377] W. Wang, J. He, L. Cai, Z. Wang, S.K. Karuturi, P. Gao, W. Shen, Solution- 
processed electron-selective contacts enabling 21.8% efficiency crystalline silicon 
solar cells, Sol. RRL 4 (2020) 2000569, https://doi.org/10.1002/solr.202000569.

[378] X. Yang, W. Liu, M. De Bastiani, T. Allen, J. Kang, H. Xu, E. Aydin, L. Xu, Q. Bi, 
H. Dang, E. AlHabshi, K. Kotsovos, A. AlSaggaf, I. Gereige, Y. Wan, J. Peng, 
C. Samundsett, A. Cuevas, S. De Wolf, Dual-function electron-conductive, hole- 
blocking titanium nitride contacts for efficient silicon solar cells, Joule 3 (2019) 
1314–1327, https://doi.org/10.1016/j.joule.2019.03.008.

[379] Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S.-T. Lee, B. Sun, High efficiency hybrid 
PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free 

Y. Zhang et al.                                                                                                                                                                                                                                   Nano Energy 131 (2024) 110282 

29 

https://doi.org/10.1016/j.jpowsour.2020.228460
https://doi.org/10.3390/coatings10080763
https://doi.org/10.3390/coatings10080763
https://doi.org/10.1002/adfm.202004367
https://doi.org/10.1002/adfm.202004367
https://doi.org/10.3390/en13184650
https://doi.org/10.3390/en13184650
https://doi.org/10.1016/j.solener.2020.09.082
https://doi.org/10.1016/j.solener.2020.09.082
https://doi.org/10.1021/acsanm.0c02475
https://doi.org/10.1016/j.solmat.2021.111110
https://doi.org/10.1186/s11671-021-03544-9
https://doi.org/10.1016/j.inoche.2021.108658
https://doi.org/10.1016/j.inoche.2021.108658
https://doi.org/10.1039/D1TA02931B
https://doi.org/10.1039/D1TA02931B
https://doi.org/10.1002/pssa.202100296
https://doi.org/10.1002/pssa.202100296
https://doi.org/10.1016/j.matchemphys.2021.125101
https://doi.org/10.1016/j.carbon.2021.08.056
https://doi.org/10.1016/j.carbon.2021.08.056
https://doi.org/10.1016/j.solener.2021.08.012
https://doi.org/10.1016/j.solener.2021.08.012
https://doi.org/10.1109/JPHOTOV.2021.3082400
https://doi.org/10.1109/JPHOTOV.2021.3082400
https://doi.org/10.1016/j.xcrp.2021.100684
https://doi.org/10.1016/j.xcrp.2021.100684
https://doi.org/10.1063/5.0070585
https://doi.org/10.1109/JPHOTOV.2021.3119612
https://doi.org/10.1016/j.jallcom.2022.164102
https://doi.org/10.1007/s12633-022-01743-2
https://doi.org/10.1088/1674-1056/ac5a42
https://doi.org/10.1002/adfm.202205901
https://doi.org/10.1149/2162-8777/ac8372
https://doi.org/10.1149/2162-8777/ac8372
https://doi.org/10.1016/j.ceramint.2022.08.084
https://doi.org/10.1002/pip.3638
https://doi.org/10.1016/j.solmat.2023.112229
https://doi.org/10.1016/j.mtener.2023.101317
https://doi.org/10.1016/j.mtener.2023.101317
https://doi.org/10.1007/s10854-023-10715-0
https://doi.org/10.1007/s10854-023-10715-0
https://doi.org/10.1016/j.mssp.2023.107653
https://doi.org/10.1016/j.mssp.2023.107638
https://doi.org/10.1021/acsami.3c05838
https://doi.org/10.1016/j.optmat.2023.114215
https://doi.org/10.1002/smll.202306666
https://doi.org/10.1002/smll.202306666
https://doi.org/10.1002/adfm.202310619
https://doi.org/10.1002/adfm.202310619
https://doi.org/10.1016/j.vacuum.2024.113000
https://doi.org/10.1016/j.vacuum.2024.113000
https://doi.org/10.1016/j.cej.2024.148568
https://doi.org/10.1109/JPHOTOV.2016.2642645
https://doi.org/10.1109/JPHOTOV.2016.2642645
https://doi.org/10.1063/1.5049270
https://doi.org/10.1021/acsnano.6b07511
https://doi.org/10.1021/acsnano.6b07511
https://doi.org/10.1021/acsami.8b16883
https://doi.org/10.1016/j.apsusc.2021.149727
https://doi.org/10.1016/j.apsusc.2021.149727
https://doi.org/10.1021/acsami.6b03599
https://doi.org/10.1002/solr.202000569
https://doi.org/10.1016/j.joule.2019.03.008


rear contact, Energy Environ. Sci. 8 (2015) 297–302, https://doi.org/10.1039/ 
C4EE02282C.

[380] N. Itoh, K. Tanimura, Formation of interstitial-vacancy pairs by electronic 
excitation in pure ionic crystals, J. Phys. Chem. Solids 51 (1990) 717–735, 
https://doi.org/10.1016/0022-3697(90)90145-6.

[381] B.F. Bory, H.L. Gomes, R.A.J. Janssen, D.M. de Leeuw, S.C.J. Meskers, Electrical 
conduction of LiF interlayers in organic diodes, J. Appl. Phys. 117 (2015) 155502, 
https://doi.org/10.1063/1.4917461.

[382] B.F. Bory, P.R.F. Rocha, R.A.J. Janssen, H.L. Gomes, D.M. De Leeuw, S.C. 
J. Meskers, Lithium fluoride injection layers can form quasi-Ohmic contacts for 
both holes and electrons, Appl. Phys. Lett. 105 (2014) 123302, https://doi.org/ 
10.1063/1.4896636.

[383] L. Fang, S.J. Baik, S. Lim, S. Yoo, K.S. Lim, Amorphous Si rear Schottky junction 
solar cell with a LiF/Al back electrode, IEEE Trans. Electron Devices 58 (2011) 
3048–3052, https://doi.org/10.1109/TED.2011.2160267.

[384] J.-H. Yang, H.-H. Jung, J. Seo, K.-D. Kim, D.-H. Kim, D.-C. Lim, S.-G. Park, J.- 
W. Kang, M. Song, M.-S. Choi, J.-D. Kwon, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. 
C. Park, Y.-C. Kang, K.B. Chung, C.S. Kim, K.S. Lim, S.Y. Ryu, Dopant-free 
hydrogenated amorphous silicon thin-film solar cells using molybdenum oxide 
and lithium fluoride, J. Phys. Chem. C. 117 (2013) 23459–23468, https://doi. 
org/10.1021/jp4031656.

[385] J. Bullock, P. Zheng, Q. Jeangros, M. Tosun, M. Hettick, C.M. Sutter-Fella, Y. Wan, 
T. Allen, D. Yan, D. Macdonald, S. De Wolf, A. Hessler-Wyser, A. Cuevas, A. Javey, 
Lithium fluoride based electron contacts for high efficiency n-type crystalline 
silicon solar cells, Adv. Energy Mater. 6 (2016) 1600241, https://doi.org/ 
10.1002/aenm.201600241.

[386] W. Wu, W. Lin, S. Zhong, B. Paviet-Salomon, M. Despeisse, Q. Jeangros, Z. Liang, 
M. Boccard, H. Shen, C. Ballif, Dopant-free back-contacted silicon solar cells with 
an efficiency of 22.1, Phys. Status Solidi (RRL) – Rapid Res. Lett. 14 (2020) 
1900688, https://doi.org/10.1002/pssr.201900688.

[387] E. Nurlaela, A. Ziani, K. Takanabe, Tantalum nitride for photocatalytic water 
splitting: concept and applications, Mater. Renew. Sustain. Energy 5 (2016) 18, 
https://doi.org/10.1007/s40243-016-0083-z.

[388] J.-S. Park, H.-S. Park, S.-W. Kang, Plasma-enhanced atomic layer deposition of Ta- 
N thin films, J. Electrochem. Soc. 149 (2001) C28.

[389] X. Yang, E. Aydin, H. Xu, J. Kang, M. Hedhili, W. Liu, Y. Wan, J. Peng, 
C. Samundsett, A. Cuevas, S. De Wolf, Tantalum nitride electron-selective contact 
for crystalline silicon solar cells, Adv. Energy Mater. 8 (2018) 1800608, https:// 
doi.org/10.1002/aenm.201800608.

[390] Y.-S. Kou, S.-T. Yang, S. Thiyagu, C.-T. Liu, J.-W. Wu, C.-F. Lin, Solution- 
processed carrier selective layers for high efficiency organic/nanostructured- 
silicon hybrid solar cells, Nanoscale 8 (2016) 5379–5385, https://doi.org/ 
10.1039/C5NR08724D.

[391] Y. Wan, J. Bullock, M. Hettick, Z. Xu, C. Samundsett, D. Yan, J. Peng, J. Ye, 
A. Javey, A. Cuevas, Temperature and humidity stable alkali/alkaline-earth metal 
carbonates as electron heterocontacts for silicon photovoltaics, Adv. Energy 
Mater. 8 (2018) 1800743, https://doi.org/10.1002/aenm.201800743.

[392] W. Wu, J. Bao, Z. Liu, W. Lin, X. Yu, L. Cai, B. Liu, J. Song, H. Shen, Multilayer 
MoOx/Ag/MoOx emitters in dopant-free silicon solar cells, Mater. Lett. 189 
(2017) 86–88, https://doi.org/10.1016/j.matlet.2016.11.059.

[393] C. Coluzza, M. Garozzo, G. Maletta, D. Margadonna, R. Tomaciello, P. Migliorato, 
n-CdS/p-Si heterojunction solar cells, Appl. Phys. Lett. 37 (1980) 569–572, 
https://doi.org/10.1063/1.91787.

[394] Y.J. Hsiao, T.H. Meen, L.W. Ji, J.K. Tsai, Y.S. Wu, C.J. Huang, Preparation of ZnS 
microdisks using chemical bath deposition and ZnS/p-Si heterojunction solar 
cells, J. Phys. Chem. Solids 74 (2013) 1403–1407, https://doi.org/10.1016/j. 
jpcs.2013.04.023.

[395] S. Limpert, K. Ghosh, H. Wagner, S. Bowden, C. Honsberg, S. Goodnick, 
S. Bremner, A. Ho-Baillie, M. Green, Results from coupled optical and electrical 
sentaurus TCAD models of a gallium phosphide on silicon electron carrier 
selective contact solar cell, IEEE 40th Photovolt. Spec. Conf. (PVSC) 2014 (2014) 
0836–0840.

[396] A.N. Fioretti, M. Boccard, A.C. Tamboli, A. Zakutayev, C. Ballif, Nitride layer 
screening as carrier-selective contacts for silicon heterojunction solar cells, AIP 
Conf. Proc., AIP Publ. (2018).

[397] W. Sun, C.J. Bartel, E. Arca, S.R. Bauers, B. Matthews, B. Orvañanos, B.-R. Chen, 
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