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THE BIGGER PICTURE Big data’s importance in materials science is clear, yet its effective use is chal-
lenging due to the sheer volume and complexity of the data. Natural language processing (NLP) offers a so-
lution by transforming unstructured text into structured formats, facilitating tasks such as extraction and
summarization. In materials science, this means converting information from scientific papers into struc-
tured datasets, a process often slowed by the continuous influx of new data. To circumvent the ineffi-
ciencies of multi-step NLP workflows, there is a growing need for streamlined, one-step NLP methods. Em-
ploying fine-tuned large language models could be key, allowing for the rapid updating of datasets and
providing valuable training data for further model development. This approach not only expedites research
but also accelerates material prediction, leading to faster scientific breakthroughs.

SUMMARY

Materials scientists usually collect experimental data to summarize experiences and predict improved ma-
terials. However, a crucial issue is how to proficiently utilize unstructured data to update existing structured
data, particularly in applied disciplines. This study introduces a new natural language processing (NLP) task
called structured information inference (Sll) to address this problem. We propose an end-to-end approach to
summarize and organize the multi-layered device-level information from the literature into structured data.
After comparing different methods, we fine-tuned LLaMA with an F1 score of 87.14% to update an existing
perovskite solar cell dataset with articles published since its release, allowing its direct use in subsequent
data analysis. Using structured information, we developed regression tasks to predict the electrical perfor-
mance of solar cells. Our results demonstrate comparable performance to traditional machine-learning
methods without feature selection and highlight the potential of large language models for scientific knowl-
edge acquisition and material development.

INTRODUCTION

Data have long been the cornerstone of empirical science and
serve as the basis for discoveries and our understanding of the
world. In recent years, big data have become an indispensable
resource for various industries, especially the technology sector.
Materials science is no exception to this trend. It has revolution-
ized the research and development of advanced materials for a

wide range of applications, including catalysts,’ thermoelec-
trics,” and batteries.®* These initiatives underscore the growing
significance of data in materials research and pave the way for
ground-breaking innovations in this field.

Despite the widespread recognition of the importance of data
and ongoing initiatives to exploit their potential, experimental
materials science continues to encounter difficulties in effec-
tively leveraging the abundance of available data.® This problem
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is particularly evident in applied disciplines, where materials are
frequently assessed primarily based on their device performance
rather than through a thorough understanding of their inherent
properties and behavior.® A crucial question in this context is
how to utilize relevant information from the vast, unstructured
scientific literature into a format suitable for materials scientists.
This challenge not only makes it difficult to gain a comprehensive
understanding of material candidates and their properties but
also hinders the identification of future applications. It further
adds to the bottleneck in the materials discovery pipeline, given
the laborious and time-consuming nature of experimental
synthesis.

Named entity recognition (NER), which aims to identify and
classify named entities in unstructured text, is a commonly
used natural language processing (NLP) technique for the auto-
matic construction of domain-specific datasets. However, these
NER-extracted datasets typically require a large amount of
annotation, along with additional pre-processing or post-pro-
cessing steps.”® They also differ from findable, accessible,
interoperable, reusable (FAIR)'® datasets created by materials
scientists in several ways, including the lack of entity correspon-
dences and the single-label format, which limits content diver-
sity. This limitation can make it challenging for materials scien-
tists to query or utilize them effectively, resulting in reduced
utility. In this study, we introduce a new NLP task called struc-
tured information inference (Sll) to leverage pre-existing FAIR
datasets in materials science. This task is at the discourse level
and, in practice, covers mainstream tasks such as NER, entity
normalization (EN), relation extraction (RE), and information
inference (Il). We accomplished this by fine-tuning LLaMA'" on
the Perovskite Database (www.perovskitedatabase.com), a
manually summarized perovskite solar cell FAIR dataset pub-
lished in February 2021 in a single step.'? Our method achieved
good performance on the Sll task and is applicable for updating
other FAIR datasets derived from scientific literature. We applied
this approach to the highly dynamic field of perovskite solar cells
and successfully extracted intricate relationships constructing
an updated FAIR dataset for other perovskite solar cells pub-
lished from March 2021 to March 2023. Additionally, we de-
signed a regression task to predict the electrical performance
of solar cells and to facilitate the design of materials or devices
with targeted parameters.

Our approach provides evidence that large language model
(LLM) can autonomously learn complex knowledge data frames
and construct output according to predefined schemas from un-
structured scientific text without requiring additional manual
annotation. The produced dataset is formatted and normalized,
enabling its direct utilization as input in subsequent data analysis,
such as machine learning, without additional processing steps.
This feature will enable materials scientists to update existing
FAIR datasets or create new ones within their domains by devel-
oping their own models, fine-tuned on high-quality FAIR datasets
and source papers. Even in cases where no FAIR dataset exists in
a specific domain, our proposed approach allows for the rapid
construction of a new dataset with minimal annotation, signifi-
cantly faster than previous methods. The results of our regression
task predicting device performance also demonstrate the poten-
tial of the fine-tuned LLM to handle various intricate materials
informatics tasks, thereby reducing the cost of trial and error.
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RESULTS

Issues of traditional annotation mechanism

In material science, significant effort has been devoted to ex-
tracting entities such as chemical terminologies, properties,
and synthesis parameters from relevant scientific literature.
The related NER methods used in materials science can be
broadly categorized as rule-based'® (relying on dictionaries or
regex rules), recurrent neural network (RNN),%'*' and trans-
former-based LLMs. In recent years, the emergence of LLMs
such as bidirectional encoder representations from transformers
(BERT)'® have become the state-of-the-art for numerous NLP
tasks, including NER. Both fine-tuned BERT'” and domain-spe-
cific pre-trained BERT®'® have shown significant improvement
in material-science NER tasks compared to RNN methods.
Several datasets'® " also utilize the NER tool'® to automatically
generate tabular databases of material property data aggre-
gated from textual entries. These NER-extracted datasets usu-
ally link material names with their co-occurring entities to analyze
potential relations.

Extracting relationships between entities in materials science
has been a challenge but this RE task received less attention
than the NER task. Mysore et al.?? built a dataset of 230 synthesis
procedures with labeled graphs where nodes represent synthesis
operations and their typed arguments, and labeled edges specify
relations between the nodes. MatSciBERT?® yields the best per-
formance of RE on this dataset. Most existing research treats
RE as a classification step following NER in an information-
retrieval pipeline and usually focuses on intra-sentence binary re-
lationships.?*2® Nonetheless, real-world situations are consider-
ably more intricate. Current approaches simplify the relations
too much and result in significant information loss. It is worth
noting that N-ary relations (involving N entities) have received
increasing attention due to their additional challenges.”* Recently,
Dunn et al.>” proposed a sequence-to-sequence LLM approach
capable of addressing complex interrelations without the need
to enumerate all possible N-ary relations.

The research mentioned above used a word-by-word tradi-
tional annotation mechanism (Figure 1), which does not align
with the needs of material scientists. In label-based NER tasks,
the output is extractive information that requires further process-
ing, such as merging abbreviations and their full forms. Some-
times, certain implicit information cannot be integrated based
on individually identified entities, leading to information loss.
For example, in the FAIR dataset used in this paper, the value
of attribute Perovskite_composition_long_form does not directly
appear in the source text but needs to be inferred from perov-
skite information such as coefficients. On the one side, word-
by-word mechanism typically demands significant effort from
both NLP and materials science experts in several aspects: (1)
creation of NER categories, (2) development of a labeling inter-
face, (3) learning costs associated with NER/RE labeling rules,
and (4) time costs of NER/RE labeling. Conversely, scientific
information often goes beyond simple pairwise relationships
between entities. For instance, a compound’s properties are
influenced by multiple factors, such as material name, phase
structure, morphology, and synthesis methods. This complexity
is exemplified in the distinction between plasma-enhanced
chemical vapor deposition (PECVD) Al-doped TiO, film and
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Figure 1. Traditional annotation mechanism

Common NLP methods used for constructing domain-specific datasets include NER, and other tasks built upon NER (such as RE). Taking the example of using
the BERT model for an NER task, the typical workflow, following the formulation of domain-specific labeling standards by domain experts, involves several steps:
text pre-processing, tokenization, manual annotation, fine-tuning on the base model, and subsequent evaluation. To enhance performance, domain-specific text
is sometimes used to continue pre-training on the base model to obtain a domain-specific base model. The entire process is labor intensive and time consuming.

atomic layer deposition (ALD) Al-doped TiO,, which exhibit
different properties. Additionally, materials knowledge is often
hierarchical, with relations that may only be valid between one
entity type and a compound entity comprising multiple entities
and relationships. Theoretically, such relations can be modeled
as N-ary, but comprehensively enumerating all possible varia-
tions is both impractical and unsuitable for traditional RE
methods, as each relation type requires a sufficient number of
training examples.

Due to the difficulty in annotation and simulation of material
information, high-quality annotated data are limited in material
science, prompting us to utilize existing review-paper data-
bases. A review article represents a scholarly publication
that amalgamates and evaluates prior research papers on a
specific topic. Such articles investigate distinct research
questions or theoretical or practical approaches, providing
readers a comprehensive and current understanding of the
research area. These articles contain natural, high-quality
summaries and intricate relationships in domain-specific sub-
jects, materials and properties, and device information. We
endeavored to trace back the summarized information in the
review paper, as provided by other scientists, to the original
text through entity and relation annotation. However, these ef-
forts did not yield a perfect match with the corresponding sec-
tions. According to statistics, exact match demonstrates a low
matching rate of 44.7% on average. The unmatched parts
require manual annotation, with an estimated annotation
time of 20 s per material entry.?” Thus, converting this dataset
into traditional word-by-word NER and RE data annotation
proved challenging.

Opportunities and new NLP task: Sli
As discussed in previous sections, existing research primarily
concentrates on identifying entities and their relationships. How-
ever, the practical process of extracting information by materials
scientists is considerably more complex, which can be explained
in two aspects:

First, it refers to the complexity of the data themselves, as
illustrated in Figures 2A and 2C, where device information is
multi-layered, and each layer contains similar elements, making

it prone to confusion (e.g., various deposition procedures). The
expressions found in research articles are also intricate and
varied. At the device level, not only do complex relationships
between materials need to be considered but units may also
differ across publications. For example, 0.3 mm? is equivalent
to 0.003 cm?. Entity definitions can be flexible, and, occasion-
ally, their meanings depend on words in separate paragraphs.
A paper might only mention Al-doped TiO,, leaving scientists
to infer whether it is ALD or PECVD grown. Furthermore,
field-specific vocabulary may introduce ambiguity, compli-
cating matters further; for instance, “Al-doped TiO, film” could
be synonymous with “AlTi,O film.” Second, it pertains to the
inherent complexity of the task itself. Transforming unstruc-
tured text into a FAIR dataset demands advanced NLP capabil-
ities. Previously, this was achieved through multiple sequential
steps, including NER, RE, normalization, and ultimately struc-
turing the data. We examined various activities that scientists
employ to summarize and infer information from materials sci-
ence articles and discovered that they mainly need four types
of ability (the first three are also existing NLP tasks), as demon-
strated by the examples in Figure 2B:

o NER: the fundamental task involves identifying and classi-
fying named entities within text, such as material names
and associated properties such as temperature. In mate-
rials science, NER is crucial for cataloging and organizing
information about various materials, which serves further
analysis of co-occurring relationship of entities and high-
level visualization.

o RE: RE involves discerning and uncovering connections
and associations between individual entries or groups of
entries within a text. In materials science, this task can
be used to identify the relationships between materials,
their properties, and applications, providing queries and
valuable insights for researchers.

® EN: EN is the process of standardizing the expression
format, units, abbreviations, and other variations in the in-
formation extracted from text. In materials science, EN en-
sures the inner consistency of data, making it easier to inte-
grate information from different sources and facilitating
meaningful cross-referencing.
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Figure 2. A new NLP task SlI

relation

(A) An overview of Sll through multi-task learning is presented, with the decoder responsible for comprehending tasks and generating the corresponding outputs.
(B) Examples of abilities in creating FAIR datasets, which include named entity recognition (NER), relationship extraction (RE), entity normalization (EN), and

information inference (ll).

(C) A diagram of multi-layered device information of perovskite solar cells in this study.

® ll: in contrast to conventional information extraction, Il
further involves advanced capabilities such as computa-
tional analysis and component inference. In materials sci-
ence, Il is of utmost importance for materials scientists
when creating FAIR datasets. This is because they need
to establish a clear schema from the outset and align infor-
mation that may not have appeared explicitly in the data to
this schema during the manual curation process.

Extracting information from scientific texts can be more chal-
lenging than the processes applied to general texts. Moreover,
a piece of material knowledge might be inferred through multi-
ple NLP tasks with multiple entities. For instance, the Al-doped
TiO, compact layer could be inferred as ALD c-Al,Ti,O layer in
a review paper or FAIR dataset when the deposition method is
mentioned in another paragraph. These complexities make
annotating related training datasets particularly demanding,
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especially at the documents level, as they represent an accu-
mulation of materials science knowledge spanning centuries.
To simulate the process of scientists extracting information
from domain-specific texts, we propose a new NLP task de-
signed for the scientific field called Sll. This task aims to jointly
perform Il (or extraction) and RE. The relationship could be hi-
erarchical or listed as multiple items without enumerating all
possible n-tuple relationships. Initially, we attempted to use
BERT-based approaches; however, the need to determine spe-
cific tasks for each piece of information complicated the prob-
lem, rendering the original BERT or domain-specific BERT
unsuitable for fine-tuning. However, the advent of Generative
Pre-trained Transformers 3 (GPT-3)® and its related applica-
tions offers new opportunities. As depicted in Figure 2A,
GPT-3 and other generative language models employ a
decoder structure, well suited for sequence-to-sequence tasks
(i.e., input text generates output text) and aligns with the
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Figure 3. Workflow of updating an existing FAIR dataset

Our workflow begins by extracting information-rich attributes from records in the FAIR dataset and preparing corresponding source text using DOIs. Then, we
design prompts for GPT-3.5 prompting and LLaMA fine-tuning (where the input is the source text, and the output is a schema containing multiple attributes in a
fixed format). After obtaining the fine-tuned model, we search for the most recent articles to input into the model, generating corresponding schemas. These
schemas are then transformed into CSV (comma-separated values) format records to update the FAIR dataset. Additionally, we explored fine-tuning LLaMA
model for MDP tasks (the input is schema, and the output is prediction of performance metrics).

generating logic of material scientists in collecting data from
the literature. Consequently, we propose fine-tuning LLaMA,
an open-source alternative, to infer key information from orig-
inal papers directly. This approach not only saves significant
time and cost but also leads to more accurate and comprehen-
sive information summarization. The LLM can capture high-
dimensional information and relationships within a paper that
traditional word-by-word labeling mechanisms may overlook.

Using LLMs for Sl task

As shown in Figure 3, the practical process of this study involves
data preparation, prompt design, training the model to complete
Sl task, making inferences on new data, and training the model
for material and device prediction (MDP) tasks. The FAIR dataset
we used has data from over 42,400 photovoltaic devices with
up to 100 attributes per device.'” We associated these data
with more than 15,000 corresponding articles using our paper
downloading tool SciCrawler (https://github.com/MasterAl-EAM/
SciCrawler). The attributes cover stack information, system-level
data, and performance metrics. Our Sll and MDP study focuses
on those with abundant information and widespread usage (about
35 attributes). We ranked records from the FAIR dataset by using
afuzzy match mechanism and selected the top 400 records as our
dataset (see section “experimental procedures”). For each re-
cord, there is a source text and corresponding schema containing
multiple attributes. The information of each schema was orga-
nized into two levels.

e Material- and property-level information: stack informa-
tion (set A) and methods information (set B) for each

layer, encompassing substrate, electron transport layer
(ETL), perovskite, hole transport layer (HTL), and back
contact.

@ Device-level information: stability (set C) and electrical
(J-V) performance data (set D).

Each attribute in the schema has an attribute name and cor-
responding value that can be inferred from the source text.
These schemas serve as the structured information our model
will learn to extract. To aid the model in understanding the task,
we implemented both prompting (directly use model to infer
without fine-tuning) and fine-tuning (supervised training on
base model) on GPT-3/3.5°° and the LLaMA model. In the
following sections, we primarily compare the results of prompt-
ing GPT-3.5 and fine-tuned LLaMA. The results of prompting
LLaMA were too poor to parse or calculate metrics. With the
fine-tuned LLaMA model, we updated the FAIR dataset using
perovskite solar cell papers published from March 2021 to
March 2023. Additionally, we explored fine-tuning the LLaMA
model for MDP tasks.

In the following section, we report the results of Sl task in
three parts: NER results, RE results, as well as the Il and EN
results. The results show that our fine-tuned model outper-
formed prompting GPT-3.5 in both NER and RE tasks, and it
also obtained high accuracy in unique EN and Il tasks. Fine-
tuning can significantly reduce the gap between open-source
models and proprietary models, enabling open-source models
to achieve commendable task performance. The results of
fine-tuned GPT-3 for the Sl task are available in Tables S2
and S3.

Patterns 5, 100955, May 10, 2024 5
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Table 1. Results of NER in SlI task

Table 2. Results of RE in Sll task

Model Set Precision Recall F1 score Manual Model Relation  Precision Recall F1score Manual
GPT-3.5 A 19.9 449 27.6 71.0 GPT-3.5 A-B 5.02 11.96 6.67 43.4
B 131 271 17.7 721 A-C 7.23 29.51 10.3 66.5
(¢} 18.9 57.3 28.4 82.5 ABC-D 2.76 10.73 3.95 49.38
D 27.0 43.6 33.3 59.3 Fine-tuned A-B 78.86 75.31 76.81 -
total  22.6 43.0 28.7 72.1 LLaMA A-C 72.63 67.22  69.42 -
Fine-tuned A 83.54 81.23 82.1 - ABC-D 71.97 65.84 68.23 -
LLaMA B 90.2 90.2 90.2 -
C 828 78.31 80.14 - only finds the corresponding parts accurately but also learns
D 97.96 97.96 97.96 - to summarize, normalize, or even deduce. Fine-tuned LLaMA
total 88.34 86.11 87.14 -

Results of SlI task

Table 1 shows the results for the schema attributes matching
computed using metrics described in "evaluation" in the "exper-
imental procedures” section, along with human evaluation. We
provided manual metrics only for prompting GPT-3.5. Despite
its poor performance in Sll automatic evaluation metrics, it could
extract relevant content based solely on prompts. The lack of
standardized formatting made manual evaluation beneficial to
offer a more comprehensive assessment of GPT-3.5’s perfor-
mance. On the other hand, the fine-tuned LLaMA model has
already learned the implicit data transformations and formatting
requirements present in the training data. Even if manual evalu-
ation were used, it would not yield significantly different results,
and there would be no substantial improvement compared to the
current automatic metrics. If a more stringent automated verifi-
cation method is used (the first three metrics), GPT-3.5 performs
poorly on all sets but shows significant improvement in human
evaluation. This disparity indicates that, although the powerful
GPT-3.5 can extract some correct information based on the pro-
vided schema prompts in the absence of fine-tuning, it fails to
conform to the requirements of the FAIR dataset format in terms
of expression. Particularly, the identification of set D remains
extremely challenging for the GPT-3.5 (F1-score = 59.3). We
speculate that this is due to the deterioration of identification per-
formance when the schema prompts themselves are not explic-
itly mentioned in the text (set D prompts are generally not explic-
itly stated in the text). In contrast, the fine-tuned LLaMA achieves
F1 score exceeding 80 on all sets, with set D reaching nearly
98%. This indicates that the fine-tuned LLaMA accurately ex-
tracts schema-relevant information and adheres to the require-
ments of the FAIR dataset format and expression.

We also look into details: the attributes generated by GPT-3.5
are longer than the target answers, especially in procedure-
related attributes (even though we have attempted to impose
length restrictions during prompt design). According to statistics
in manual evaluation, about 15% of correct predictions pro-
duced by GPT-3.5 contain significant unrelated information,
while this ratio is only 4% for our fine-tuned model. Conse-
quently, the former had a lower precision and higher recall
considering the averaged length of the output. However, its
recall is still significantly lower than that of a LLaMA fine-tuned
on material scientific knowledge datasets, which implies that
GPT-3.5 cannot accurately summarize hidden information in
input paragraphs directly. In contrast, a fine-tuned model not
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achieved about 94% of the performance of fine-tuned GPT-3.

Table 2 reports the RE scores, which evaluate the consistency
of inner attribute sets of output schema. Since a proper relation
must be based on the correct extracted entities, the perfor-
mance of the RE task is influenced by the performance of the
NER task. Thus, the RE scores here can be seen as a reflection
of the NER-RE task, not just RE.

Overall, the fine-tuned model significantly outperforms
GPT-3.5 in all three types of RE (about 15 points in average).
Specifically, the performance degradation of the fine-tuned
model (about 10%) from the NER to NER-RE task is much
smaller than that of GPT-3.5 (about 30%). The averaged differ-
ence between precision and recall is also smaller for the fine-
tuned model. In comparison, the fine-tuned model has a more
balanced performance among the three types of relations.

We further analyze the results of Sll in detail. We introduce the
concept of EN and Il to measure the model performance. EN in
our Sll task reflects in the normalization of different units and
forms of terms, while Il reflects in the inference of implicit infor-
mation, which does not appear directly in the source text. Table 3
shows the support number and accuracy of |l, entity normaliza-
tion for units (EN-U) and entity normalization for terms (EN-T) on
our fine-tuned model, respectively. To help to understand, we
also give their example prompts and outputs. We did not display
the results of the GPT-3.5 model for these tasks because the ac-
curacy of each task is 0% or close to 0%. In comparison, the high
accuracy achieved by fine-tuning the model indicates that our
model greatly enhances the ability of language modeling to
comprehend data formats and fill in missing information, simu-
lating the process by which scientists extract and process data
from research papers.

MDP with LLM

Upon further investigation of the Sll results, we identify a phe-
nomenon known as hallucination within the LLM outputs in set
D. In this context, hallucination refers to instances where no sta-
bility test is mentioned in the input but the fine-tuned SIl model is
employed. We devise a regression task for predicting device
performance to quantify the model’s performance. However,
as only 11% of the training device data have undergone stability
tests, the sample size is insufficient to generate adequate
training and test sets. Consequently, we opt for electrical perfor-
mance data, as all data points possess associated values,
including open-circuit voltage (Voc), short-circuit current (Jsc),
and power conversion efficiency (PCE). Notably, the model
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Table 3. Results of Il and EN in SlI task

Task Example prompt Example completion Support Accuracy

1] ... perovskite precursor containing perovskite material: FASnI3 70 75.71
FAI, Sni2 ...

EN-U ...annealed at 343 Kfor1 h ... temperature: 70°C; time: 60 min 41 70.73

EN-T ... mesoporous TiO5 ... material: TiOo-m 154 75.32

only predicts data points of JV_light_spectra under AM1.5 and
JV_light_intensity equal to 1,000 W/m?.

The fine-tuning of the regression model used the same method
as the SlI task. We employed plain-text schema with corre-
sponding values as input to predict values of three properties
(the values are continuous numbers), which are V., Jsc, and
PCE, for perovskite solar cells employing specific synthesis
methods. We use mean absolute error (MAE) and root-mean-
square error (RMSE) to measure the difference between the pre-
dicted value and the true value:

n

1
MAE = EZ

i=1

Yi — Vi (Equation 1)

ZO’:‘ —n}’i)

i=1

RMSE = (Equation 2)

Although LLMs cannot predict real numbers in highly precise
regression tasks, they can still produce predictions of accept-
able accuracy by employing rounded values during training. A
precision of two decimal points is deemed sufficient for electrical
performance data. The prompt question and a detailed example
schema are available in the supplemental information. Figure 4
visualizes the experimental results and prediction values of
Voe, Jse, @and PCE for comparison. Table 4 demonstrates the
MAE metrics of the fine-tuned model in MDP for the regression
task with RMSE metrics for Vo, Js¢, and PCE being 0.12, 4.48,
4.71, respectively.

The fine-tuned GPT-3 (Table S4) has much better performance
than fine-tuned LLaMA on the MDP task, and the level of
randomness in predicting PCE has been significantly reduced.
It can be observed that, in fine-tuned GPT-3 (Figure S1) and
fine-tuned LLaMA (Figure 4), both Jsc and V.. look slightly
more promising than PCE. We believe the relatively poor perfor-
mance of PCE may be due to the fact that PCE values are calcu-
lated from Jgc and Vo using the formula

FFVocdsc

PCE = P,

(Equation 3)

where FF is fill factor and Pin is the input power. Therefore, the
PCE values accumulate errors from Jgc and Vo, and these errors
present in the training dataset are also propagated to the predic-
tions, making the prediction of PCE more challenging. On one
hand, the composition of the devices is quite complex, and, on
the other hand, there is inherent experimental data error ob-
tained from the papers, making the prediction of device perfor-
mance itself a challenging task. Taking the experimental dataset
HOPV15%° as an example, performance of machine-learning
models trained on device information in predicting PCE is around

3.6 + 0.8 (MAE).®" Even for devices prepared from the same
batch of experiments, there is a variation in performance of
2%-5%. Therefore, in this study, we are merely exploring the ca-
pabilities of LLMs and find that they can indeed learn some cor-
relation between certain device parameters and their perfor-
mance during training.

We also depict the effect of the training dataset size in Figure 5.
An epoch refers to one complete pass through the entire training
dataset during the training. As we have set the number of epochs
to be equal to three, the examples beyond 360 are repeated. It
can be observed that there is a sharp reduction of training loss
during the first 180 examples, but, after one epoch, the decrease
is relatively slow and marginal.

DISCUSSION

Based on the predicted schemas, we summarize the issues of
direct use of GPT-3.5: (1)the predicted schema may occasion-
ally miss one or two attributes (considered as incorrect answers
during evaluation). (2) The suggested schema can alter the
expression of the generated answer. For example, “Backcon-
tact additives compounds” becomes “Backcontact additives/
compounds.” (3) There can be multiple expressions for
the same answer, such as “not mentioned,” “N/A,” “none
mentioned,” and “not specified,” which causes difficulties in
parsing and predicting a unified format. (4) The generated an-
swer’s length is not fixed and can sometimes be very long,
even if the prompt design limits the length (the limit not always
works). (5) Correct answers may undergo unnecessary
changes in expressions, such as converting “60 min” to “1
h.” (6) Repetitive answers with similar content. (7) Sometimes,
hallucinations occur (details in section “MDP with LLM”).

In comparison, fine-tuning exhibits significant advantages: (1)
top experts in the field design the framework and it aligns more
closely with the domain-specific experimental thinking. (2) It
saves the cost, time, and effort of annotation. (3) Professionals
in the relevant field can directly use the results of the same
framework without any additional learning costs.

Our study demonstrates that an LLM, even without prior
training in materials science, can predict device performance
data that may not be explicitly stated in the literature. Although
the generated hallucinated information is not completely accu-
rate, it remains valuable for researchers using the amassed sci-
entific knowledge. In contrast to the recent advancements in
perovskite solar cell prediction by Liu et al.,* who manually
collected 814 data points from 2,735 publications and built ma-
chine-learning models for J-V performance prediction using only
13 features, LLMs are capable of automatically generating
higher-dimensional datasets. This ability allows LLMs to guide
subsequent device design at the material level, accounting for
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Figure 4. Performance of fine-tuned LLaMA on predicting V,, Jsc, and PCE
We compare the experimental values and fine-tuned LLaMA prediction values. The horizontal x axis displays experimental results, while the vertical y axis
displays predicted values. Compared with Vo, and Jsc, the prediction of PCE exhibits higher randomness.

parameters such as annealing time, annealing temperature, ma-
terial thickness, and area. The models offer greater flexibility in
feature selection, and feature values are not confined to numer-
ical data, providing readily obtainable information for scientists.
Jablonka et al.®*® also demonstrated that GPT-3 performs
comparably with or outperforms traditional techniques when
confronted with limited data, particularly for organic compounds
with unique line encodings such as SMILES®* or SELFIES.*®
Similarly, we devised a schema for predicting the organic photo-
voltaic devices (OPVs) PCE (density functional theory [DFT],
calculated) based on the Harvard Photovoltaic (HOPV15:
https://doi.org/10.1038/sdata.2016.86)°° Dataset. Compared
to the Bayesian regularized artificial neural network with Lapla-
cian prior (BRANNLP) method employed by Meftahi et al.,*°
fine-tuned GPT achieves comparable performance with a simple
schema design (see supplemental information).

LLMs, such as the LLaMA used in the study, have demon-
strated proficiency for identifying structural and property-related
similarities between novel materials and those previously inves-
tigated, akin to the expertise of seasoned materials scientists.
This ability to identify similarities enables the investigation of var-
iations in these novel materials, consequently opening up oppor-
tunities for innovative applications. Moreover, LLMs exhibit the
potential to design cutting-edge devices by harnessing detailed
material information. While these general-purpose LLMs were
not initially tailored for scientific fields, their performance in this
domain suggests a promising future in scientific applications.
By augmenting LLMs with further training in relevant scientific
literature, they may potentially be empowered to guide experi-
mental design and significantly expand their scope of applica-
tions in materials science and beyond.

In this study, we introduce a new NLP task called SlI, which
aims to obtain hierarchical, domain-specific material and device

Table 4. MAE of regression tasks on performance prediction of
perovskite solar cell

Sample 10 90 180 360
Voc - 0.203 0.123 0.098
Jse 18.10 6.91 4.52 3.42
PCE 10.22 6.15 4.73 3.99
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information within a structured FAIR format from unstructured
scientific texts. After analyzing traditional annotation mechanism
and characteristics of LLM, we proposed to solve this task by
fine-tuning one of the LLMs, LLaMA. Remarkably, this approach
does not necessitate manual annotation, instead relying on re-
view papers or FAIR datasets for training purposes. By employ-
ing this method, LLaMA can effectively predict material proper-
ties and device performance, as well as generate innovative
materials or devices tailored to meet specialized requirements.
On the most important NER metrics, fine-tuned LLaMA achieves
94% of the performance of fine-tuned GPT-3, while prompting
LLaMA get almost no usable results. This indicates that fine-tun-
ing can significantly reduce the gap between open-source
models and proprietary models, enabling open-source models
to achieve commendable task performance. We recognize that
open-source models may not perform as well as mature com-
mercial models due to factors such as parameter scale and
training strategies. However, we chose to utilize popular open-
source models to ensure that the trained models can be openly
shared, used, and maintained by the academic community. This
helps drive the development of this task or paradigm and garners
more attention.

Demonstrating exceptional flexibility, the approach readily
adapts to various challenges within scientific fields and exhibits
outstanding performance in both Sil and MDP tasks, particularly
for perovskite and organic photovoltaic devices. Existing LLMs
can leverage this method to extract structured relational data-
sets, thereby guiding material development. We will continue
exploring multimodal models to further utilize table and figure
data, as demonstrated in our convolutional neural network
(CNN) framework.®” This end-to-end approach ultimately seeks
to empower scientists with the ability to swiftly generate material
knowledge and design novel materials or chemicals for research
purposes. To showcase our method, an online demonstration
can be accessed at http://www.masterai.com.au.

Limitations of the study

In this study, we observed that failures predominantly occur
when a sample surpasses LLaMA’s prompt-completion token
limit, which was set at 2,048 during the investigation. This limita-
tion implies that paragraphs characterized by considerable
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Figure 5. Relationship between epoch and training loss on regres-
sion task

We visualize the decreasing curve of training loss during fine-tuning LLaMA on
MDP task. The horizontal axis represents the epoch, while the vertical axis
represents the training loss. The curve indicates that 180 examples can enable
the model to grasp the underlying patterns of predicting device performance
based on device information.

length or high information density are fundamentally incompat-
ible with the current approach. A significant proportion of un-
parsable completions can be attributed to instances where the
passage and partial completion extend beyond the imposed to-
ken limit, consequently leading to premature truncation and hin-
dering the generation of a comprehensive output.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Bram Hoex (b.hoex@unsw.edu.au).
Materials availability

This study did not generate physical materials.

Data and code availability

The fine-tuned models and the code used for fine-tuning and inference are
publicly available at GitHub (https://github.com/masterAl-EAM/MATGPT)
and Original data have been deposited to figshare: https://doi.org/10.6084/
m9.figshare.24972699.v1.%® We also provide related datasets and the DOIs
of the articles we used in the Sll task. To showcase our method, an online
demonstration can be accessed at http://www.masterai.com.au.

Dataset preparation (fuzzy match mechanism)

Each record we extracted from the FAIR dataset is formed by a doi of source
paper and one or more schema (most source papers have one schema and
each schema stores information of one device) with multiple attributes. Each
attribute in the schema is formed by a pair of name and value; for example,
in the attribute “Substrate_stack_sequence: SLG — ITO,” “Substrate_stack_
sequence” is the name and “SLG — ITO” is the value. For the dataset prepa-
ration, we first downloaded and processed the full text of source papers. To
meet the 2,048 token limit requirement (about 1,500 words) of LLaMA, we
only extracted the most informative sections in the papers. The condition is
that the header of the section should contain keywords “experimental,” “ma-
terials,” “methods,” or “experiment.” We joined these extracted sections by
space and call it source text.

We proposed a fuzzy matching mechanism to figure out how well a schema
matched with its source text. The match rate of a schema and its source text is
the ratio of matched value to all values in the schema. The schemas and source
text were converted to lowercase, and the value of each attribute in a given
schema is split into a list of pieces by delimiters (e.g., |, ; ,:). Each attribute
had a given matching rule. By default, as long as one piece of the split values
appears in the source text, we consider the entire value and source text to be a
match. For the name “ETL stack sequence,” if the whole string or the substring
before “-” in a given value appears in the source text, it is a matched value. For
the names “perovskite composition long form” and “perovskite composition
short form,” if a given value is a subset of a single word within the source
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text, itis a matched value. For the names with the value “unknown,” we always
count them as a match. For source text with more than one schema, we ranked
the schemas by the match rate from high to low and only select the top one. We
then ranked the source text by the match rate of only schema and select the
top 400 source text and their schema as the training samples. The match rates
of schemas in these selected samples ranged from 100% to about 85%.

Schema design

In fine-tuning, we transformed the original tabular data into a plain text schema
to facilitate the model’s understanding. Each schema is presented as a dictio-
nary, where the keys represent the attribute names and the values represent
the corresponding attributes. For each relevant paragraph, we aimed to enable
the model to learn how to automatically and accurately summarize a corre-
sponding schema. We conducted prompt design to obtain results that are
as close to the desired format as possible (we opted not to utilize the original
LLaMA for comparison, as, even with well-designed prompts, the model pro-
duced results that were exceedingly difficult to decipher, often containing
numerous repetitions and nonsensical outputs). After multiple attempts, we
designed a prompt using the original paragraph with the prefix “Read the
following paragraphs and extract the information below:” and list of attribute
names attached. For comparison, we use similar prompts on GPT-3.5. We
removed underscores in attribute names and added some requirements to
limit the length or content of the attribute names. For example, we added
“(only name, not details)” after the attribute name “HTL deposition proced-
ure.” For attribute names that require boolean answers, we changed the attri-
bute names into general questions. For example, we changed “Module” to
“Any Module test?.”

Fine-tuning details

We choose llama-7b-hf (7B parameters)'' as our base model since it is one of
the most capable open-source LLMs available for fine-tuning, considering our
limited computing resources. And for GPT-3 fine-tuning, we used Davinci via
OpenAl API. Each data sample has an instruction, an input, and an output.
Specifically, the instruction is a short sentence describing the task. The input
is the text extracted from scientific papers with several paragraphs having
schema information. The output act as the answer to those schemas, including
31 name-value pairs in the form of “schema name: answer.” For parsing con-
venience, our dataset is in .json format, where \n is inserted among each
schema, <s > at the beginning of the output, and < /s > at the end of the output.
Then the dataset is split into a training set and a test set containing 360 and 40
samples separately. The model is trained for three epochs at a batch size of 1.

Evaluation

We evaluated the performance of the fine-tuned model and GPT-3.5 on SlI task
using four decomposed sub-tasks: NER, RE, EN, and Il. The metrics of the NER
task evaluated how likely an output schema (prediction) was matched with the
target schema (answer). Instead of BiLingual Evaluation Understudy (BLEU) or
Recall-Oriented Understudy for Gisting Evaluation (ROGUE) scores (common
metrics for natural language generation tasks), we opted for custom word toke-
nization due to the special delimiters in some values of the FAIR dataset. Each
value of attribute in the output schema can be seen as an entity EP and the cor-
responding value in the target schema can be seen as an entity £2. We design a
word-basis measurement by separating an entity E into a set of words
S = {wq,wz,ws,...,wx} and comparing the difference between SP and S°.
The separators include ;, |, :, and >>. After separating both entities, the number
of matching words in both sets is counted as true positives (S° N S?) and the set
difference is counted as false positives (SP\S?) or false negatives (S?\SP). For
example, an attribute in the output schema is “70.0 > 120.0” and the corre-
sponding answer was “70.0 > Unknown,” and we recorded one true positive
“70.0,” one false positive “120.0,” and one false negative “Unknown.” With
true positives (tp), false positives (fp) and false negatives (fn) identified, metrics
of each pair of entities were calculated as:

. to .
precision = oo (Equation 4)
recall = to (Equation 5)
" tp+fn a
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2 X precision X recall

F1 — score = —
precision+recall

(Equation 6)

The metrics of the RE task evaluate how likely the output schema caught the
inner relationship between related attribute sets. According to the nature and in-
ternal relation of attributes in the schema described in "using LLMs for Sl task,"
we construct three types of relations: A-B, A-C, and ABC-D. The relationships
are also scored by a word-basis measurement similar to the one NER uses, using
a number of correct collocations. Each collocation is an n-tuple relating words
w]] of each involved entities E, in relation r. For each type of relation, we can
summarize collocations in the predicted schema into a predicted relation set
(RP) and those in the answer schema into an answer relation set (R?). The number
of matching collocations in both relation sets is counted as true positives (R° N
R?) and the collocation difference is counted as false positives (RP\R?) or false
negatives (R\RP). After all kinds of collocations were identified, metrics of RE
were calculated with the same Equations 1, 2, and 3 described above.

In addition to word-basis measurement, we also manually evaluated the per-
formance of NER and RE. Two experts with domain knowledge of material sci-
ence were invited to manually judge the prediction of models by their quality. For
each prediction of the attribute, they need to give a score of 0 (incorrect), 1 (cor-
rect but with unrelated information), or 2 (correct). When they have different opin-
ions on the same prediction, they negotiate with each other and give a final de-
cision. Both 1 and 2 were counted as correct to calculate the accuracy of manual
evaluation. However, there is a discrepancy in the evaluation scores: when using
the exact match to evaluate, it is too strict for GPT-3.5 without format training,
while manual evaluation ignores the form differences and may not be fair to
the fine-tuned model (not counting its ability of EN and Il). Thus, we further eval-
uate the performance of Il, EN-U, and EN-T. The attributes selected do not
appear in the original text, which means their target answers have changes in
form, scale, or expression compared to corresponding parts in the original
text. Only an exact match with the target answer is counted as correct.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2024.100955.
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