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ARTICLE INFO ABSTRACT
Keywords: Solar photovoltaic (PV) deployments are growing rapidly to provide a sustainable source of electricity, but their
Photovoltaics output is strongly impacted by environmental phenomena such as soiling and low irradiance conditions induced

Performance assessments
Solar energy generation
Haze concentration

Air pollution

Irradiance

by haze from urban sources, dust, and bushfire smoke. This review examines the effects of haze on PV perfor-
mance, highlights significant results, and identifies apparent research gaps in the current literature. In addition to
the severe health issues caused by industrial exhausted aerosol, dust storms particles, and bushfire smoke,
reduction in irradiance (in some cases up to 80%) is the most dominant impact of these sources of haze. Haze also
causes changes in the received solar spectrum, and higher bandgap PV materials are more affected by the
presence of haze and aerosols in the atmosphere by 20-40% than low bandgap semiconductors. In many cities
throughout the world, pollution-related haze causes substantial annual revenue loss to PV operators. In addition,
haze imposes severe effects on direct irradiance; therefore, tracking systems and concentrated PV systems are
most affected. These technical impacts of haze all indicate the need for careful customization of PV systems for
specific locations. In addition, to increase global PV output, it is clear that air pollution control regulations such
as China’s national policies against air pollution and eco-friendly international actions such as COP26 should be
employed and executed. Further studies are needed including indoor experiments, forecasting future implica-
tions of aerosols on PV energy conversion, and performing energy policy analysis to identify associated chal-
lenges and propose practical strategies.

(PM) pollution that has become a common phenomenon worldwide,
1. Introduction especially in metropolitan areas. This PM pollution is due to three causes
1) the high rate of industrial activities and other anthropogenic causes

There has been a significant increase in the solar photovoltaic (PV) (e.g. urban haze) [13], 2) dust storms in deforested and arid regions
installed capacity worldwide, increasing from 41 GW in 2010 to 716 GW [14], and 3) bushfire smoke [15]. The latter of which is now common in
by the end of 2020 [1], with a continuous trend of exceeding expecta- some countries during summer, such as the 2019-20 Australian [15] and
tions [2, 3]. For example, China has increased capacity from 1 GW in 2021 British Columbia bushfires seasons [16].

2010 to 254 GW by 2020, while the United States has progressed from 3 Haze from particles of all three sources can be suspended in air or
GW PV in 2010 to 74 GW by 2020 [4]. This growth is being driven by the deposited on surfaces. Urban haze (human-made or anthropogenic)
levelized cost of electricity (LCOE) [5], which is highly dependent on typically consists of sulfur dioxide (SO2) or sulfate (SO4) and other

long term performance (e.g. lifetimes of 25 years or more [6]). There are hazardous gases [17]. Dust haze particles induced by sand storms consist
numerous threats to the rated performance of PV plants, and how these of aluminum silicon oxide (AlSiO), silicon dioxide (SiO2) and calcium
concerns are addressed is important [7-9] for long-term financing [10, carbonate (CaCOs3) [18]. Bushfire smoke compositions are mainly car-
11]. Among these, environmental factors are one of the most critical bon oxides and nitrogen oxides [19], which are often smaller than other
challenges. The meteorological conditions strongly impact the output of atrn.()ﬁpherlc particles, such as water droplets, sanq, or sea salt [20]. In
a PV system at the PV plant’s site, which might experience cloudy, rainy, addition to the severe health issues caused by industrial exhausted
and foggy conditions and reduced solar flux from haze [12]. Whereas aerosols [21], dust storms particles [22], and bushfire smoke [23], these
these first three meteorological factors are natural, the latter detrimental phenomena cause significant losses in irradiance.reaching F}}e PV Cf.?HS
factor of haze is often caused by humans through particulate matter [24], spectrum changes [25, 26] and haze’s particle deposition, which
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Nomenclature

Abbreviations definitions

a-Si Amorphous silicon

a-Si:H  Hydrogenated amorphous silicon
AERONET Aerosol robotic network

AlSiO Aluminum silicon oxide

ANN Artificial neural network

ARIMA  Autoregressive integrated moving average
ASTM  American Society for Testing and Materials
BP Back propagation neural network

CaCO3; Calcium carbonate

CdTe Cadmium telluride

CERES  Clouds and Earth’s Radiant Energy System

CIGS Copper indium gallium selenide

CoP UnitedNations Climate Change Conference

c-Si Crystalline silicon

CSP Concentrated solar thermal power

CPV Concentrated photovoltaic

ECMWF European Centre for Medium-Range Weather Forecasts
models

GaAs Gallium arsenide

GBDT Gradient boosted decision trees model
GCM Global climate modeling

GEM Global environmental multiscale

GISS Goddard Institute for Space Studies

GSEE Global Solar Energy estimator

HCPV  High-concentration PV

ICPMS  Inductively coupled mass spectrometry

IEEE Institute of Electrical and Electronics Engineers

InN Indium nitride

J Junction

LCPV Low-concentration PV

LOESS  Locally weighted scatterplot smoothing

NASA The National Aeronautics and Space Administration

NASA’s AIRS Atmospheric Infrared Sounder on NASA’s Aqua
Satellite database

NASA’s EOS NASA’s earth observing system

NASA’s MAIAC Multi-angle implementation of atmospheric
correction

NASA’s MERRA Modern-era retrospective analysis for research and

applications dataset
NASA’s OMI NASA’s ozone monitoring instrument
NO, Nitrogen dioxide

NREL National Renewable Energy Laboratory
NWP Numerical weather prediction

MAIAC Multiangle implementation of atmospheric correction
MARS  Multivariate adaptive regression splines
MPP Maximum power point for a PV module
PAR Photosynthetically active radiation

PCC Pearson correlation coefficients

PM Particulate matter

PV Photovoltaic

SARAH Surface solar radiation data set - Heliosat
SiO, Silicon dioxide

SO, Sulfur dioxide
SO4 Sulfate

STC Standard test conditions

SVR Support vector regression

™Y Typical meteorological year data

uv Ultraviolet

WRF Weather research and fore-casting models

Parameters

apy Coefficient determined empirically that establishes the

AM
AMy
AOD
AOD 550

AOD 550y Umbral AOD at 550 nm

API
AQI
bPV

CF
LCOE
DHI
DNI

Ef PM, abs
Ef PM,scat
EIR
EIREe

EIRMMF
ENjc

G
G
Go

GHI
G, Isc

7

Grneasured
/

Grymr
Gpymz.5
H, amb

i

IRR
Isc

Short-circuit current of AM1.5G spectrum [A ]

IMea.sured
MPP

Nominal
ISC

IReal_Spectmm
SC

Mpy 1

Mpy i
MMF
n
NPV
nRMSE
Po
Pac
Pma.x
Pout
Pcpy
Ppy

Ps1c
PBP

POAI
POAI
PM 2.5
PM 10
PR

PSI

Q

R

ri

upper limit on module temperature when wind speeds are
low and solar irradiance is high

Air mass

Umbral air mass

Aerosol optical depth

AOD at 550 nm

Air pollution index

Air quality index

Coefficient determined empirically at which module
temperature decreases as wind speed increases
Capacity factor (%)

Levelized cost of energy [$]

Diffuse horizontal irradiance [W/m?]

Direct normal irradiance [W/m?], [MJ/mZ/day]

PM mass absorption efficiency [mz/g]

PM scattering efficiency [m?/g]

Effective irradiance ratio (%)

Effective irradiance ratio based on short-circuit current
(%)

Effective irradiance ratio based on mismatch factor (%)
AC output energy [J]

Solar irradiance [W/m?], [kWh/mz/day]

Irradiance of examined solar cell or module [W/m?]
Measured irradiance in clean day [W/m?]

Global horizontal irradiance [W/m?]

Irradiance of examined solar cell or module calculated
based on short circuit current [W/m?]

Measured irradiance by sensor [W/m2]

Irradiance calculated based on mismatch factor [W/m?]
Measured irradiance in hazy day [W/m?]

Relative humidity [g/m3]

Index, represent specific element

Internal rate of return

Short circuit current [A ]

DC-generated current of PV module [A]
Nominal Isc [A]

Short-circuit current of real world spectrum [A]
visible solar energy to the total mass loading within a
specified time period [g/m?]

Mass loading of component i [g/m?]

Spectral mismatch factor

Number of elements in atmosphere

Net present value [$]

Normalized root mean square error

Nominal DC power of installed PV [W]

Output AC power [W]

Maximum output power [W ]

Output power [W]

Potential estimated CPV power output [W]

Potential estimated PV power output [W]

PV module power at the standard test conditions [W]
Payback period

Point of array irradiance [W/m?], [kWh/mz/day]
Point of array reference irradiance [W/m?]

Mass of particles smaller than 2.5 pm [pg/m®]

Mass of particles smaller than 10 pm [pg/m®]
Performance ratio (%)

Pollutant standards index

Solar insolation [W/m?], [kWh/mz/day]

Coefficient of determination

Ratio of short-circuit current generated under real world
spectrum (Iac-5¢"my an theoretical short-circuit current
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generated under AM1.5G spectrum (IAM159)

T2 Ratio of DC-generated currents of PV modules (I}%d) to
the short-circuit current generated under AM1.5G
spectrum (I441-56)

RMSE Root mean square error

SR Spectral response [A/W]

SSA Single scattering albedo

T Transmittance

Taop Light transmittance affected by aerosols

Trpw Light transmittance affected by water in atmosphere

t Time [s]
TPW Total perceptible water

Voc Open-circuit voltage [V]

Vwind Wind velocity [m/s]

Y Energy yield [kWh/kWp]

Yy Final PV system yield [kWh/kWp]
Y, Reference yield [kWh/kWp]
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Greek symbols

ISc The temperature coefficient related to the short-circuit
current [1/°C]

o cpv Coefficient specific to CPV module [°C/Wm 2]

B Particulate matter up scatter fraction

AOcna Difference of the module temperature and the module’s
back surface temperature at 1000 W/m? irradiance level
[°C]

Scpv Cell’s temperature coefficient for CPV model [1/°C]

ecpy Air mass coefficient for CPV model

n Conversion efficiency (%)

0 Temperature [°C]

Oamp Ambient temperature [°C]

0 m Temperature of the module’s back surface [°C]

0 mod Module’s temperature [°C]

H;‘:‘)gd Annual module temperature [°C]

651C Module’s temperature at STC conditions [°C]

@ cpv Aerosol optical depth coefficient for CPV model

also decrease conversion efficiency (7). Irradiance change caused by
haze directly affects the power generation of PV plants (Py,), solar
irradiance (G), insolation (Q), energy yield (Y), and conversion effi-
ciency () [27]. For that reason, the first step in assessing PV power
plants’ production should be calculating irradiation at the PV modules
and spectrum variations after being affected by the aforementioned
phenomena [25, 26]. Soiling can be considered a further outcome of
haze [28], severely reducing power generated by PV systems from direct
shading [28, 29]. A schematic illustration of the various impacts of haze
on solar energy generation is shown in Fig. 1.

Historically, PV systems were deployed in ideal environments, but as
the economics of PV have improved, PV deployments have expanded to
non-ideal locations, including those with substantial haze potential. As
haze is such a widespread environmental concern and PV is now being
deployed in these areas a review is needed to help provide clear guid-
ance for best practices to developing PV in high-haze areas. To do this,
this article provides a systematic literature review of PV electricity

[_] Dust haze particles: mainly composed of SiO; and CaCOs
@ Anthropogenic (human-made) haze particles: Mainly composed of SO- or SOx
A Bushfire smoke particles: Mainly composed of Carbon oxides and Nitrogen oxides

generation under haze and their impacts on solar cells is not yet avail-
able. This paper is structured as follows: Section 2 comprehensively
describes how researchers correlate haze concentration to PV output and
what materials are needed for this purpose, discussing the methodolo-
gies and approaches for analyzing the impacts of haze on PV systems.
Section 3 discusses the effect of haze on the output PV power plants
worldwide over the years and presents results from the literature.
Finally, Section 4 discusses practical solutions for discussed problems
concerning the impacts of haze on PV energy generation, and Section 5
provides conclusions highlighting significant results, and suggestions for
future work.

1.1. Why haze affects PV energy generation

To optimize PV system performance in suboptimal locations, it is
essential to understand the physics behind the reduced performance of
PV as a result of haze. First, PM suspended in the air prevents some

wp . High irradiance

: Low irradiance

Fig.1. Schematic illustrations of the impact of haze on PV power generation.
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sunlight from reaching the PV. When the concentration of PM increases,
the optical depth (light transmission from the atmosphere to the Earth)
is influenced, and consequently, the aerosol optical depth (AOD) will
increase. AOD is the most critical parameter for analyzing the amount of
solar radiation’s extinction by particles in the atmosphere. An increase
in AOD contributes to a reduction of solar energy generation through
direct radiative forcing (with scattering and absorption by atmospheric
PM) and indirect radiative forcing (with changing cloud albedo as well
as cloud lifetime), and lowering the light transmittance (T) [30-32] (see
Fig. 2). Numerous studies have demonstrated a decrease in
short-wavelength irradiance (Fig. 3) and photosynthetically active ra-
diation (PAR) as AOD increases (such as in China [33], Australia [34]
and Spain [35]). As a result of the aforementioned phenomena, the
spectrum and irradiance intensity will change as a result of haze (Ray-
leigh scattering [25]) (Fig. 3). This is the main reason behind the
degradation in performance of PV systems by haze, which will be dis-
cussed in Section 1.2. Haze can also lead to other phenomena degrading
the output of PV systems, such as deposition of airborne particles on PV
modules (soiling) and irradiance mismatch [irradiation deviation from
standard test conditions (STC)]. Soiling is out of the scope of this review,
and interested readers are referred to Refs. [36-41] for reviews and
comprehensive articles on this topic.

1.2. Change in spectrum and irradiance intensities

Due to sun path geometry and weather conditions, the air mass (AM)
changes during the day; hence PV systems will perform differently
compared to STC AM1.5 conditions (See Fig. 3). These losses are typi-
cally estimated at around 1% [44, 45]. During haze events, however,
these effects are more severe, and PV systems are expected to experience
more losses [26, 46]. These spectral shifting impacts will depend on the
spectral response of the used PV technology [26, 46-48]. It should be
noted that as the PM values increase, the intensity of the visible and UV
range are greatly reduced while in the infrared intensity increases.

To quantify these impacts, the performance ratio (PR) (Eq. 1) is used
for assessing PV system performance and is calculated by:

ENac

Y, POAI P,
pr=tro n PO L &
r POAI, 0 Z

In Eq. 1, Yy is the final PV system yield, Y; is reference yield, ENac is
net AC output energy, Py is nominal DC power of installed PV, P4 is the
ac power of the PV system, POAI is in-plane irradiance, which can be
measured by a sensor at the same orientation of the PV module, and
POAI, = 1000 W/m? is reference irradiance. Another approach to
describing this phenomenon is the annual effective irradiance ratio
(EIR), which is:

pyE
EIR, = 2
=36 2
t
EIR is defined as the ratio between the effective irradiance intensity
of examined solar cell (G) and reference module irradiance (G) [46].

Solar radiation

Modification of Scattering and absorption
cloud albedo & by aerf)sols &
lifetime perceptible water

Indirect effect Direct effect

Fig.2. Radiative forcing by scattering and absorption of solar radiation,
changes in clouds albedo and lifetime owing to aerosols and clouds in
the atmosphere.
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Consistent with the results shown in Fig. 3, Liu et al. [26] demon-
strated that during an event of haze in Singapore in 2013, the reduction
in irradiance was not uniform across the spectrum. The spectrum
reaching PV modules was found to be considerably less blue-rich in the
presence of haze than on a typical day [26]. They found a more signif-
icant decrease in shorter wavelengths, which is the main reason for
variations in PV generation in Singapore (particularly those of high
bandgap PV thin film materials such as amorphous silicon (a-Si:H),
cadmium telluride (CdTe) and copper indium gallium selenide (CIGS)
[26, 46]). For example, the PR of a-Si:H PV decreased up to 7% in hazy
weather conditions [26], while there was a constant trend in PR for
crystalline silicon (c-Si) PV. The reason behind the good performance of
c-Si under hazy conditions is that they have a higher spectral response
(SR) at near-infrared wavelengths because of their relatively low
bandgap (1.12 eV). PV cell materials with a lower band-gap like c-Si,
indium nitride) InN(, etc. show a SR peak in the infrared region, whereas
those with a larger band-gap closer to the ideal of AM1.5 spectrum have
a maximum SR at higher photon energies (See Fig. 3). Therefore, this
raises an important point that higher band-gap PV technologies are more
vulnerable to haze, which may play a role in location optimized PV of
the future [49]. On the other hand, without haze, the a-Si module per-
forms better in Singapore. The reason is that the spectrum in Singapore
is blue-rich [46]. Likewise as haze from pollution is reduced, optimal PV
selection may shift to higher bandgap semiconductors for a particular
region. In addition, whendesigning and establishing power plants in
regions like Singapore, which experience haze frequently, optimal op-
tical engineering is more complicated, and more factors should be
considered [26].

According to Ye et al. [46], haze negatively influences the perfor-
mance of some solar cell technologies as scattering of short-wavelength
light decreases by aerosols and particles in the atmosphere (similar to
Fig. 3) [50, 51]. During an event of haze, owing to a red-shift appeared
in the irradiance spectrum, the EIR for a-Si systems decreased by 2%,
CdTe modules experienced a slight decrease in EIR, while copper indium
gallium selenide (CIGS) and double-j (jumction) micromorph solar cells
(a-Si/pc-Si) were not affected [46].

Peters et al. [42] indicated that in Delhi, perovskites modules are
affected most by haze following by CdTe, gallium arsenide (GaAs), and
c-Si PV modules, i.e., GaAs, CdTe, and perovskite PV modules experi-
enced 23 %, 33 %, and 42 % more losses in comparison with c-Si,
respectively, because they depend on shorter wavelength light (also
indicated in Fig. 3). This impact is slightly dependent on the haze of a
given city as shown in Fig. 4. Another result previously illustrated in
Fig. 3 by Peters et al. [42] shows the effect of fine particles equal or
smaller than 2.5 pm (PM2.5) on the spectral irradiance compared to
most common PV technologies spectral responses. This strongly verifies
the aforementioned outcomes regarding the variation of the spectrum
and decrease in shorter wavelengths irradiance, which is also in line
with Rayleigh scattering theory [25] and other research indicating that
there is higher absorption at short wavelengths because of nitrated and
aromatic aerosols in haze [52]. Therefore, it is clear that PV power
output exposed to haze mainly depends on the material technology used,
where higher bandgap materials are more vulnerable to haze.

2. HOW to correlate haze concentration to PV performance

After the spectral impacts of haze on PV are understood, it is possible
to correlate PV performance to haze concentration. Different factors
contribute to haze concentration and important parameters affecting
and affected by haze phenomena are summarised in Fig. 5. The primary
material employed in the literature to define a correlation between haze
concentration and PV performance is analysing of the data obtained by
meteorological tools, such as satellites data or surface-based experi-
ments, and modeling methods.

As climatic phenomena are the primary variable with haze, meteo-
rological tools are critical for PV research in this context. They provide
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Fig. 4. Losses in photon flux absorbed by different PV technologies in different cities (adapted from data in [42]).

essential data for the establishment of analysis to estimate solar irradi-
ance extinction. Aiding data analysis methods, and mainly for data
collection purposes, outdoor experiments are also conducted as field
measurements during haze events or low irradiation periods. System
performance modeling methods were widely developed to focus on
meteorological and PV power plant data, addressing issues of solar
power generation under haze, while spectrum measurements and

calculations to investigate the effects of particulate matter on spectrum
changes are also used in the literature, analysing potential spectral
changes and their effect on PV power generation.

Table 1 summarizes the tools, models, and methodologies utilized in
the literature in this area, along with their specifications, aiding pro-
spective researchers to employ these methods or develop new, improved
methods for assessing the effect of haze on solar energy systems.
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Materials needed for correlating

haze to PV output
Satellite |
data N\ Data Analysis
Light | Meteorological 4/‘ \__  Experimental Theoretical
scattering [ tools and models data ,/ models
Clear sky | _/ PV forecasting — “— PV modeling 2 Fmpirical
models models

Parameters Affected by haze

* Output Power (P) [W]

® Aerosol Optical Depth (40D) [nm]

o Light transmittance (7)

o Spectral irradiance [W/m’.nm)]

e Solar irradiance (G) components [W/m’],[kWh/ m?/ day]

Parameters effective in haze concentration
o PM 2.5 [ug/m’]
e PM 10 [pg/m’]
o Air pressure (4ir,) [hPa]
o Wind Velocity(Vying) [m/s]
® H,,,, (Relative humidity) [%]
e Temperature (6) [°C]

Global Horizontal Irradiation (GHI) [W/m?]

Flat PV systems rely on GHI

Clear sky index' (K,)

Point of Array Irradiance (POAI) [W/m’],[kWh/ m?/ day]

Direct Normal Irradiance (DNI) [W/m?], [MJ/ m*/ day]

Concentrated Solar Systems and Tracking Systems rely on direct irradiance
Diffuse Horizontal Irradiance (DHI) [W/m’]

Diffuse fraction® (K,)

Solar insolation (Q) [kWh/m?]

® Capacity factor (CF)

o Conversion efficiency ()

e Energy yield (Y) [kKWh/ kWp]

e Performance ratio (PR)

And other electrical parameters

Fig.5. Main factors, parameters and materials needed for analysing haze concentration and PV energy generation under hazy weather conditions.' "

Particular attention and more information are devoted in the last col-
umn of Table 1, e.g., noting if the tools are open source and can thus be
more readily accessible to all researchers.

2.1. Data collecting, analysis, and modeling
2.1.1. Meteorological tools and models

2.1.1.1. Satellite data. Satellite-derived data can be employed for
obtaining meteorological information such as temperature as well as
irradiance data. These data can be used as input for modeling methods,
and accessing them increases the speed of investigations and avoids
time-consuming site measurements. Some satellite data used in the
literature are listed in Table 2.

2.1.1.2. Light scattering estimation. Bergin et al. [55] studied the
reduction induced by aerosols in light transmittance (T) and solar en-
ergy generation. In the first step of their research, chemical character-
istics of dust were determined using inductively coupled mass
spectrometry (ICPMS) [127] for identifying up to 50 elemental com-
ponents and the ASTM D5373-08 method to obtain total carbon, nitro-
gen and hydrogen. Obtaining chemical characteristics helps researchers
determine the fraction of carbon in the dust. Then, based on the
modeling of PM radiative forcing proposed in the global climate
modeling (GCM), losses due to PM were identified. GCM utilize Goddard
Institute for Space Studies (GISS) ModelE2, which evaluates both DNI
and DHI, takes into account the effects of clouds, and considers the

2

effects of PM on the visible flux at the Earth’s surface. It is noteworthy
that solar PV were considered fixed and horizontal in their assessments,
yet in real-world applications, the tilt angle is generally higher partic-
ularly as systems are deployed further from the equator. Modeling the
impact of specific deposited particulate matters on solar energy re-
sources was conducted based on Eq. 3,

AT 1 v
= > (EF o + BEF My, 3)
Mo Mpnr ( " pat.ans + PES PM,gcar PM,

i=1

where AT/Mpy,; refers to the transmittance changes (AT) of visible solar
energy to the total mass loading within a specified time period (Mpy,¢), n
stands for specific PM components (Ex. n=5 stands for five different
components), Mpy,; is the mass loading of component i, Efpy,aps and Efpy,
scat are PM mass absorption and scattering efficiencies respectively and
represents particulate matter up scatter fraction.

Peters and Buonassisi [59] studied the performance of PV solar cells
by considering various factors affecting PV operation. In their study,
various parameters influencing the light transmittance and PV systems,
including water droplets and aerosols, were investigated between 2006
and 2015. Different metrological parameters and their correlations are
involved in quantifying the performance of PV modules such as Q,
temperature (0), total perceptible water (TPW), and AOD to study the
relationship between these meteorological parameters. For considering
the effect of TPW and AOD on T, light transmittance affected by water in
the atmosphere (T7pw) and light transmittance affected by aerosols
(Taop) were calculated according to SMARTS2 [69, 70] in cloudless
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Table.1
Useful tools, methodologies and techniques for assessment of solar energy systems under haze used in the literature.
Tools Methodology
Usage Name Target Parameters Required Materials Remarks Refs.
Meteorological Estimation of irradiance, NASA Satellite Global Horizontal GISS GCM ModelE, MAIAC, More information in Section [24, 27,
weather data, light datasets Irradiance (GHI) (GHI), OMI, MODIS, CERES, 3.1.1.1.GISS GCM ModelE is 42,
transmittance and AOD Diffuse horizontal MERRA, MERRA-2, SARAH, open-source. 53-671
irradiance (DHI), direct MERRA-T2M, AIRS, EOS
normal irradiance (DNI),
T, AOD, Humidity,
Temperature, SSA,
Angstrom coefficient,
Ground reflectance
Estimation of irradiance SMARTS2 Estimating solar Rayleigh scattering, aerosol Open-source, Spectrum [27, 59,
irradiance, light extinction, and absorption by ~ radiation model 68-70]
extinction, and ozone, evenly mixed gases,
transmittance water vapor, and NO,
Estimating light extinction IMPROVE Analysing light PM 2.5, and meteorological In the first IMPROVE [71-73]
algorithm and its extinction data algorithm, the assumption is
revised version that light absorption by gases
is zero. The first algorithm is
based on Rayleigh scattering,
particle scattering, particle
absorption. The revised
IMPROVE algorithm has
more accuracy with
considering parameters such
as sea salt effect and NO5
light absorption impact.
Identifying and evaluating WRF-Chem Model the emission, Emission data Used in the literature to [74-76]
meteorological elements transportation, mixing, calculate PM 2.5 data
and chemical
transformation of
aerosols
Filtering cloudy Reno and Hansen Clear sky irradiances Actual irradiance datasets v/ Advantage: Detecting [27,77,
environment, Clear sky model cloudy periods without 78]
irradiance detection misclassifying them as air
pollution
v/ Available in Python
(PVLIB)
v 5-steps procedure discussed
in Section 3.1.1.3
Nobre et al. model Clear sky irradiances Actual irradiance datasets Based on three filters [79, 801
(defined in section in Section
3.1.1.3): humidity filter,
diffuse irradiance fraction
filter and clean sky irradiance
filter
Data analysis Irradiance and output power  Yang et al. model Calculating DNI, GHI, Meteorological data (relative v Improved [81, 82]
and Calculation and DHI sunshine duration, surface Angstrom—Prescott model.
processing pressure, perceptible water, v Used by Zhou et al. for
global distribution of ozone calculating DNI of CSP power
thickness, global distribution plants
of angstrom turbidity
coefficient
PVLIB Calculating hourly clear Satellite irradiance and v Open-source, available in [24, 78,
sky irradiance (DNI, GHI, weather data (aerosol, MATLAB and Python 83-86]
DHI and POAI), Py, PR, clouds, temperature and vMore information can be
and 7. other meteorology data) found in Section 3.1.3.1.2
pvOps Data normalizing PV time-series data v Open-source, available in [83, 871
Python
Rojas et al. model Estimating DNI, data Historical irradiance data vBoland-Ridley-Lauret (BRL) [27, 88]
quality control for model
irradiance dataset
Predicting based on artificial Persistence Irradiance and PV output Historical irradiance data, PV v Sutaible for dense cloud [89, 90]
intelligence (AI) method forecasting data cover or clear sky
vMore information can be
found in Section 3.1.4
Autoregressive Irradiance and PV output Historical irradiance data, PV v/ Sutaible for irradiance data [89, 90]
integrated moving forecasting data sets which have irregular
average (ARIMA) paterns
vMore information can be
found in Section 3.1.4
Combination of Irradiance and PV output Historical irradiance data, PV vLeads to better and more [89, 90]

Persistence
method and
ARIMA

forecasting

data

accurate results compared to
only Persistence or ARIMA,
v Firstly proposed by Nobre

(continued on next page)
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Tools Methodology

Usage

Name Target Parameters

Required Materials

Remarks Refs.

Correlating parameters

Outdoor
experiment

Experiments

Indoor
experiment

PV models Performance and output
and modeling
analysis

Artificial neural
network (ANN)

Forecasting the output of
PV systems under haze

Support vector
regression (SVR)

Forecasting the output of
PV systems under haze

CatBoost Irradiance predicting

M5 model tree Irradiance prediction

Perez et al. model GHI prediction model

Back propagation
neural network
(BP)

Multivariate
adaptive
regression splines
(MARS)

locally weighted
scatterplot
smoothing
(LOESS) and cubic
smoothing splines

Irradiance predicting

Irradiance predicting

Spectrum mesurements

Pearson
correlation
coefficient (PCC)
Electrical

Verify the correlation
established between
parameters

Current and Voltage,
Performance ratio (PR)

Irradiance Spectrum, irradiance
(GHI,DHI, and DNI), and

AOD

Chemical characteristics
of aerosols

Chemical

Sandia PV Array
Performance
Model (SAPM)

Calculate PV DC output

PV data

PV data

Historical irradiance data

Historical irradiance data

Meteorological data

Historical irradiance data

Historical irradiance data

Spectrum data

PV data

I-V meter, software
programs, utility grade
energy meters, and data
logger
Spectroradiometer,
Pyranometer, Pyrheliometer,
Sun photometer and
AERONET

Inductively coupled mass
spectrometry (ICPMS)
instrument, and ASTM
D5373-08 method

Satellite irradiance and
weather data

PV DC output

et al. 2016

vMore information can be
found in section 3.1.4
vMulti-layer ANN was used
in the literature for
forecasting PV output under
haze

vMore information can be
found in Section 3.1.4

v Used in the proposed [74, 92,
literature to establish 93]
relationship between

meteorological data and PV

output

vMore information can be

found in Section 3.1.4

v Open-source [81, 94,
vRandom forest and gradient 95]
boosted decision trees
(GBDT)-based method
vLinear regression model
vFor predicting continuous
numerical attributes
vNumerical weather
prediction (NWP) model,
averaged the global
environmental multiscale
(GEM), european centre for
medium-range weather
forecasts (ECMWEF), and
weather research and fore-
casting (WRF) models.
Peforms better than sole
models.

v/ Used by Nobre et al. for
generating GHI values

v A 3-layer machine learning
method for solar irradiance
prediction

vBased on regression
analysis

[91, 92]

[81, 96]

[90, 971

[81, 98]

[81, 99]

v1n the literature it was used
to analyse effect of spectrum
variations on current
generation, and compare
actual and theoretical values
of current.

vMultivariate linear
regression analysis.

vMore information can be
found in Section 3.1.3.1.1
vMeasuring robustness of
linear correlations

[26, 71,
100, 101]

[59, 91,
102]

vMore information can be
found in Section 3.1.2

[26, 27,
103-105]

vMore information can be
found in Section 3.1.2

[26, 27,
106]

v ICPMS for elemental [55]
components analyses, and

v ASTM D5373-08 method

was conducted to identify

share of total carbon,

nitrogen and hydrogen

v Used in PVLIB [107]

v Used in PVLIB [108]

(continued on next page)
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Tools Methodology
Usage Name Target Parameters Required Materials Remarks Refs.
Sandia Convert PV DC power to
Performance AC
Model for Grid
Connected
Photovoltaic
Inverters
NREL model Power output POAI and temperature vMore information can be [27, 109]
found in Section 3.1.3.1.2
Global Solar Power output, CF Irradiance hourly datasets v Open-source, its software [62, 110,
Energy Estimator tool is available in renewable. 111]
(GSEE) ninja
vMore information can be
found in Section 3.1.3.1.2
MATLAB Simulink Power output Irradiance and temperature VFirstly proposed by Wu et al. [112]
data vMore information can be
found in Section 3.1.3.1.2
POAI calculation PVLIB POAI Satellite irradiance and Vi et al. used PVLIB for [24]
weather data (aerosol, calculating POAI
clouds, temperature and vMore information can be
other meteorology data) found in Section 3.1.3.1.2
Khoo et al. model POAI Satellite irradiance v Used by Nobre et al. for [89, 113]
calculating POAI
Isotropic-sky Estimating POAI Irradiance datasets v Appropriate for overcast [114,
insolation days 115]
Anisotropic-all-sky ~ Estimating POAI Irradiance datasets v Appropriate for clear days [115,
model 116]
Enhanced Estimating POAI Irradiance datasets v Proposed by Klucher [115]
anisotropic-all-sky v Appropriate for both
model overcast days and clear days
CPV performance and Fernandez et al. Potential power output AM, AOD, temperature, DNI vMathematical modeling of [27, 117,
output modeling model data CPV potential spectral 118]
distribution and the electrical
output
vMore information can be
found in Section 3.1.3.1.2
conditions. In the Del Hoyo et al. study [27], a sun photometer with
Table.2 Aerosol Robotic Network (AERONET) was employed to obtain AOD
Satellite-derived data used in the literature for experimenting haze impacts on . . .
PV values [27]. For this purpose, they used Multi-Angle Implementation of
’ Atmospheric Correction (MAIAC) AOD by NASA, which employ satel-
Dataset Application in evaluating  Availability Literature lites data from Moderate Resolution Imaging Spectroradiometer
name haze Reference (MODIS) AQUA and NASA’S TERRA projects. The MAIAC consist of AOD
NASA’S AOD estimations, Data freely availableon  [27, 53] values at 470 nm, 550 nm and water vapor data at spatial resolution of 1
MAIAC [119] km.
NASA’s AOD, single scattering NASA’s OMI is [59]
OMI with albedo (SSA), Angstrom available with
NASA’s coefficient, ground registration [57, 120], 2.1.1.3. Clear sky modeling. Obtaining clear sky irradiance is necessary
MODIS reflectance estimations MODIS data is freely for assessments, as these values are compared to hazy days’ irradiance
available [58], MODIS values. In the context of the effect of haze on PV energy systems, two
script freely available .. . e . .
[58] efficient clear sky identification procedures were used, which are
GISS GCM Light transmittance Code freely available [55] described here. For future research, new clear sky models such as
ModelE estimations, on [56, 121] [128-133], and their results in investigating haze can be compared and
CERES Irradiance estimations gla‘a ﬁ]‘:e[lé’oa"]azi;b]e 5)‘]‘ 42, discussed [134]. A strong clean sky detection model was proposed by
rou s .
MERRA Irradiance estimations Free agccess on [123] [61, 62] Reno and Hansen [?7]’ e%nd this methOd.waS used by Del HOyO etal [2.7]
MERRA-2 Irradiance estimations Free access on [124] [62, 631 to reach clear sky irradiances. In the first step, days with GHI consid-
SARAH Irradiance estimations Data available through  [62, 64] erably below the mean value are classified as cloudy. The next criterion
[125] examines the maximum of GHI to discover periods when the GHI rises
MERRA- Temperature data Free access on [124] [62] due to brightness induced by clouds, and then compare it with the clear
T2M Used to estimate of Gy . L. L.
NASA’s Relative surface Data available through  [59] sky model value. The third criterion compares the variation of a clear
AIRSand  humidity and total [65, 126] sky model compared to the variation of a time period. The fourth one
EOS perceptible water data investigates the maximum difference between GHI and the calculated

! Ratio of observed GHI to the estimated GHI under clear sky conditions, both

at ground level.

2 Ratio of DHI to the GHI.

irradiance by a clear sky model. The final criterion determines the
standard deviation of GHI variations; defining periods as overcast if it
exceeds 8W/m?. This model is available in the open source Python
community-supported tool [27, 77, 78].

Moreover, a methodology based on three filters to obtain irradiance
values on clear sky days (pollutant standards index (PSD<50) was
proposed by Nobre et al. [79] to study the effect of haze on PV
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technology. These values are considered baseline days without haze.
These clear sky days are identified by statistical analysis of recorded
data. The humidity filter (as the first filter) is used to discard conditions
with a relative humidity greater than 80%, which are related with rain
or cloudy pre/post rainy conditions. After applying a humidity filter, a
diffuse irradiance fraction filter is employed on all the data, which
passed the previous filter to eliminate situations with diffuse irradiance
fraction ratio (Kg) above 0.5 (high cloud cover and no rain). Finally,
clean sky irradiance band filters were utilized to complete the
above-mentioned filters by omitting previously verified irradiances that
are not within a range of +100 W/m? clear sky values, defined by model
[80] (circumstances with cloud enhancement effects). The arbitrary
threshold of 100 W/m? was chosen to consider more verified values, yet
strict enough to delete points that are clearly outside the proposed range
of the clear sky model.

2.1.2. Experimental data

If proposed data are not available by satellites or more accurate data
are needed, site measurements and experiments can be employed.
Conducting field measurements, local experiments, and systems moni-
toring are needed to validate the haze models and theories and prepare
the basis for future developments. Zagouras et al. [135] pointed to
distributing ground sensing networks for optimal irradiance measuring.
The meteorological network in Singapore employed by Nobre et al. [79,
89] is an excellent example of these sensing networks, in which several
stations (8 peripheral stations + 1 validation station) were used for data
collection and validation during an haze observations in Singapore.
Table 3 lists some instruments used by researchers in the literature to
measure parameters affected by haze.

There have been several experimental studies quantifying the PV
energy loss due to haze. For example, Maghami et al. [103] studied the
effect of air pollution particles on the power generation of fixed and
tracking flat PV. Local weather stations recorded various meteorological
parameters and P, and Y were measured to obtain a relation between
haze and solar power generation. Finally, multiple regression analysis
[136] was used to confirm the correlation between meteorological pa-
rameters and power generation losses. Maghami et al. [103] showed that
fixed flat PV arrays are more suitable than the tracking flat PV array in a
country like Malaysia with a tropical environment that experiences haze
events frequently.

In 2017, Abd Rahim et al. [105] carried out outdoor electrical ex-
periments and economic analysis to assess the impact of bushfire smoke
on PV performance in Malaysia. They measured the P4, of a PV panel,
irradiance (G), and module temperature (6,,4) for two periods of hazy
and clean sky conditions to quantify production losses in PV modules.
They [105] reported 17.8 % decrease in PV module power output during

Table 3
Laboratory instruments used in the literature for experimental measurements of
haze impacts on solar PV.

Equipment Application in examining haze Ref.
Spectroradiometer Spectrum measurement [26, 106]
Pyranometer, silicon Measuring GHI and DHI [26, 27, 79,
sensor 89, 106]
Pyrheliometer Measuring DNI [27]
Two-axis sun tracker Sun tracking for irradiance [27]
measurements
Automatic sun Measuring AOD, Angstrom coefficient, [27]1
photometer SSA, Asymmetry factor, concentration of
aerosols and water vapor data
Ultrasonic Measuring Vi,ing (wind velocity) [27]
anemometer
ICPMS instrument For elemental components analyses [55]
I-V meter, Shunt/ Measuring cells current and voltage [26, 27, 79,
transducer 89, 103-105]
Energy meter Measuring power and performance ratio [26, 79, 89]
Datalogger For saving measured data [27, 103-105]
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a haze event. Based on economic analysis [105], an 8 % reduction in net
present value (NPV), and a slight decrease in internal rate of return (IRR)
were reported, while the payback period (PBP) increased around 10 %
when haze was present in Malaysia for 6 months. Lastly, to determine
the relationship between PV output and haze induced by wildfire, they
used analysis of variance (ANOVA), which resulted in R square value of
0.991921 [137]. In terms of electrical parameters, this study only dis-
cussed I, V and Ppqy., but future work could also evaluate the fill factor
(FF). Recently, Chen et al. [106] studied the negative effects of haze on
PV panels installed in Shanghai, China. In this study, the PM2.5 con-
centration was recorded over a period of one year via an online local air
quality system. Then, three months with the highest haze level were
selected, and G was recorded for these months by a pyranometer.
Finally, the correlation between haze, irradiance, and consequently,
power generation of PV was investigated based on well-described
methodologies [42, 79] to compare experimental results with esti-
mated values. Chen et al. [106] showed that PM2.5 and G were inversely
correlated. For PM2.5 concentration of 73 pg/m?, the irradiance and
power generation reduction percentages were 38.6% and 39.7%,
respectively (46.9% irradiance reduction and 49.6% power reduction
for 105 pg/m®). Their financial analysis showed that the payback pe-
riods with and without air pollution were 6.64 and 6.12 years,
respectively.

A closer look at the literature on the impact of haze on PV systems
reveals several gaps and shortcomings, especially related to controlled
indoor experiments. Conducting indoor experiments, for example, at
laboratories with a dust chambers and solar simulators (particularly
those with both intensity and spectral control), would be beneficial for
establishing empirical linear and non-linear relationships between haze
concentration and losses in PV power output. An extensive framework
for future studies based on experimental studies and current research
gaps in the literature is shown in Fig. 6 to demonstrate the outdoor and
indoor electrical experiment procedures and compare the results with
modeling methods.

2.1.3. PV Modeling

2.1.3.1. Theoretical modeling. A large number of theoretical or physical-
based models are available in the literature for analysing the relation-
ship between haze and PV energy degradation, such as Sandia PV Array
Performance Model (SAPM) to calculate PV DC output [107] and Per-
formance Model for Grid-Connected Photovoltaic Inverters to calculate
PV AC output [108], both implemented in the open source pvlib and
open source SAM [138]. The NREL equation [109] was used by Del Hoyo
et al. [27] for potential estimated PV power output (Ppy) estimation on
hazy days (Eq. 11). These types of models can be employed for different
locations and applications. In the following sections, the most appro-
priate physical models for investigating the effect of haze on PV systems
are discussed.

2.1.3.1.1. Spectrum modeling. A novel spectral analysis was performed
by Liu et al. [26]. They gathered data from PV power plants in Singapore
for precise analysis and modeling to evaluate the impact of haze on the
spectrum and solar irradiance. Therefore, r; and r; ratios are defined as
follows:

IReal,Spezrrum
__8sc
"= ansG Q)]
Ne
INaminal
AM1.5G _"SC
kYol - 1000 X Gmeasured (5)
easure
[M d
MPP (6)

Iy =
AM1.5G
ISC

These are novel metrics for evaluating PV performance under haze at
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Fig. 6. A framework for outdoor and indoor electrical experiments.

the same time points. Statistical analysis [100] was established by to
simply compare r; and ry, where r; (Eq. 4) is short-circuit current
generated under real world spectrum (Iac-#*"") divided by theoretical
short-circuit current generated under AM1.5G spectrum (4159, calcu-
lated by Eq. 5, where 2™ js nominal Is¢ specified on modules speci-
fication sheet and Gpegsureq is the measured irradiance by sensor).
Moreover, they measured DC-generated currents of PV modules
(IMeasured) gnd the irradiance induced on the modules, then the r; ratio
was defined in (Eq. 6). Their two statistical analyses to establish the
correlation between r; and rp; were locally weighted scatterplot
smoothing (LOESS) and cubic smoothing spline with ten knots, both
integrated with Pearson correlation coefficient (PCC) to validate the
correlation between parameters.

At the same time, Ye et al. [46] analysed the solar spectrum and its
effect on the efficiency of PV modules by considering various technol-
ogies, including single-j a-Si, CdTe, CIGS, and double-j micromorph Si
(a-Si/pc-Si). Two different approaches, including spectral mismatch
factor (MMF) [139] and the short-circuit current (I;.), were used to
measure the EIR (Eq.2) of these four PV technologies at a function of
time (t). The former is based on the MMF determined from the spectrum
at outdoor conditions and the modules’ indoor spectral responses (SRs).
The spectral MMF can adapt the irradiance intensity of a test device
receiving a non-standard spectrum with irradiance intensity needed
under the standard spectrum. In contrast, standard test devices deliver
the same current under both irradiance levels. The EIR based on MMF
(EIRMMF) s calculated based on Eq. 7, which Gy, can be calculated
from Eq. 8.

EG;\/IMF
EIRM™F =1 ?)
G
2
Gypyp =MMF x G (8)
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The latter method established on the modules’ Isc is measured in
outdoor conditions. The irradiance spectrum’s divergence from the
standard spectrum affects the module’s Isc. Hence, the Ig¢ loss or gain
compared to AM1.5G radiation reveals how the non-standard spec-
trum’s effective irradiance intensity differs from the AM1.5G spectrum.
The EIR based on Is¢ (EIRE) is calculated based on Eq. 9, in which G Isc
can be calculated from Eq. 10. "¢ and EX° denote module temper-
ature and short-circuit currents at STC, G°€ is the irradiance with the
AM1.5G spectrum,f,,,q is module’s temperature, and a igs¢ is the tem-
perature coefficient for the short-circuit current.

ZG,[SL‘
EIR'SC =——— 9
G
>
Le(G0) o (el s)
e = Ne ].;Tc x GT¢ = I"S‘:lc mod) oo GSTC (10)
Ne Ne

2.1.3.1.2. Power output modeling. The pvlib-Python model flowchart is
presented in Fig. 7 [84, 85] and was utilized by Li et al. [24] to calculate
the POAI induced on PV modules. pvlib [78, 84-86] is an open-source
MATLAB and Python based tool for simulating performance of PV sys-
tems. Researchers used this tool for calculating POAI [24] and hourly
clear sky irradiance (GHI, DNI , and DHI) [83]. Input data for the
pvlib model are irradiance and weather data. The latest release of this
software can be accessed through [140, 141]. The models used in pvlib
are Sandia PV Array Performance Model (SAPM) [107] and Performance
Model for Grid-Connected Photovoltaic Inverters [108]. Li et al. [24]
derived surface irradiance data (period of 2003-2014 in China) from
CERES [142, 143] and investigated the impact of fixed tilt angles and
tracking PV systems in their research.

Sweerts et al. [110] presented a fully justified methodology based on
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Fig. 7. Flowchart of PVLIB.

the Global Solar Energy Estimator (GSEE) [62] open-source model
implemented in renewable.ninja [144]. GSEE [62] is a Python-based
model, which converts hourly irradiance data into hourly power
output. The flowchart of this model is presented in Fig. 8. The latest
version of GSEE can be accessed through the following references [111,
145]. Radiation datasets from 1960 to 2015 in the mainland of China
were utilized [110] to compute CF of residential PV systems and
utility-scale PV power plants. CF is the actual generation of PV system
divided by the maximum generation of PV system under laboratory
conditions. Also, in their modeling, different panel orientations were
considered.

In 2020, Del Hoyo et al. [21] conducted a comprehensive
site-specific study in Santiago de Chile. They collected metrological data
using some field measurements from 2014 to 2016 from two university
campuses. Then, PV output monitoring was conducted at one campus
using two different types of modules: mono c-Si and thin film a-Si. In the
next step, modeling methods were utilized, in which the algorithm of
Reno et al. [77] was employed for filtering out cloudy periods. To obtain
AOD values and compare AOD loads in different locations, the MAIAC
developed by NASA [53] was used. SMARTS2 model [68] was also
utilized for investigating clear sky irradiance. Finally, for calculating the
aforementioned PV technologies outputs, Klucher [115] model and
NREL [109] (Eq. 11) were used.

POAI Sov
PPV:PSTC( ) <l_ﬂ(0:1n§d_0mod))

POAI, 100 an

where Ppy is the potential panel output, Pgrc is the power at STC, POAI is
the irradiance incident on the solar module, POAI, stands for reference

irradiance, Spy stands for the temperature coefficient of power, and Hﬁ:'fd -

6mod defined as differences of annual average and operating module
temperatures. To calculate o4 for flat PV modules, equation (Eq. 12)
by King et al. [146] should be used:

POAI

Omod =0 + -5 X A0q

POAI, (12

0, =POAI x {e ™ or ¥} 49, 13)
where 6y, is the temperature of the module’s back surface and can be
calculated from Eq. 13, Af.yq is the temperature differential between the
module temperature and the module’s back surface at a 1000 W/m?
irradiance level, apy is the coefficient determined empirically that es-
tablishes the upper limit on module temperature when wind speeds are
low and solar irradiance is high, bpy is the coefficient determined
empirically at which module temperature decreases as wind speed in-
creases, and Vying is wind velocity at a height of 10m, and gy, is the
ambient temperature. At the same time, Fernandez et al. [117] equation
(Eq. 14) was employed for simulating high concentrator photovoltaic
(HCPV) potential power output (Pcpy),

P
Popy == x (1= 8cpy (Bmos — Brma) ) X (1 — ecpy(AM — AM,))
DNIgrc
x (1= @cpy (AODssy — AODsso,)) a9
Omod = Oamp + acpy X DNI - Bepy X Viyina (15)

where DNI gt is direct normal irradiance at STC conditions, Scpy is the
65TC is the cell’s temperature at STC

cell temperature coefficient, @,



S.A. Sadat et al.

Renewable and Sustainable Energy Reviews 167 (2022) 112796

™\

- - — Stage 1:
Inputs
MERRA MERRA-2 MERRA-T2M SARAH
Calculate:
Calculate:
Irradiance —= =) Ambient temperature (0,,,)
at power plant location Database
at power plant location
Diffuse fraction model
Stage 2:
I Modeling
Calculate
POAI
(based on DNI & DHI)
Calculate PV power output
Stage 3:
Outputs

Fig. 8. Flowchart of GSEE.

conditions, ecpy is the air mass coefficient, AM is defined as the air mass,
AMy is defined as the umbral air mass, ¢cpy is the AOD coefficient, AOD
550 is defined as the AOD at 550 nm and AOD 550,y is described as the
umbral AOD at 550 nm. To calculate 6,04 for CPV modules, Eq. 15 [147,
148] should be used, in which V g is the wind speed, and acpy and
Pepy are the coefficients specific to CPV module, which should be ob-
tained empirically. In 2020, Wu et al. [112] used quantitative methods
to quantify the effect of haze on PV modules in China. Their analysis was
conducted based on data samples of PV power plants in Hangzhou and
Tianjin in China. To identify irradiance changes caused by haze, they
used the exponential-linear model [149], [150].

2.1.3.2. Empirical models. Empirical models are one of the tools pro-
posed in the literature to evaluate the impact of PM on irradiance. These
models were developed based on experimental results and statistical
analysis. For instance, Peter et al. [42] derived an empirical equation
(Eq.16) for calculating irradiance on hazy days. This equation was used
by Chen et al. [106] as well to estimate irradiance in China. Similarly,
Wu et al. [112] proposed some experimental equations for China to
calculate irradiance based on PM2.5. Son et al. [151] presented some
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empirical equations for South Korea, correlating PV power generation to
DNI, temperature, PM2.5, PM 10, and relative humidity. Still, indoor or
outdoor experiments can derive more empirical equations for different
locations and applications.

Peters et al. [42] conducted field measurements in Delhi to obtain PM
2.5 to define the empirical correlation between irradiance loss and PM
concentrations. Furthermore, they collected data from various online
sources [152-156] to project losses in other locations. Their methodol-
ogy for correlating PM 2.5 and loss in irradiation exposure is based on
Ref [79], by which Peters et al. [42] presented empirical Eq. 16 based on
their analyses. Chen et al. [106] and Nocerino et al. [157] used Eq. 16 as
well.

Gpuns —PM25 i i
_ Delhi, Ind o
o (750 - 90> elhi, India (16)
G —PM2.5
222‘5 = exp( 250 ) Naples, Italy 4

InEq. 16 & 17, Gpma.s and G represent measured irradiance during a
hazy day and clean day, respectively, and PM2.5 is the concentration of
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particles smaller than 2.5 pm. However, Peters et al. [42] note that Eq.
16 is only valid for Delhi, and more studies are needed to investigate
how Eq. 16 need to be adapted for other locations. Using the afore-
mentioned methodology, firstly, they calculated relative losses in inso-
lation using field measurements, modeling, and estimations. Then, using
obtained relative values integrated with POAI, and PV panels power
potential data [158], they estimated the loss in PV modules with an
optimal angle.

2.2. Forecasting

The increasing demand for PV power worldwide will require both
short-term and long-term forecasting to provide practical guidelines
facilitating increasing PV deployment velocity. Therefore, forecasting
the PV power plants’ output operating under a hazy environment can be
considered an important area of research. Different methodologies for
forecasting the impact of haze on solar power generation can be
employed like persistence [159] and ARIMA [160] deployed by Nobre
et al. [89], artificial neural network (ANN) by Junhyuk et al. [91], and
SVR machine learning by Wenjie et al. [74].

In 2015, seminal contributions were made by Nobre [90] in the
assessment of haze on PV forecasting by combining the persistence
[159] and ARIMA [160] models. Persistence is one of the simplest
methods relying on time-series data for forecasting when data patterns
vary slightly. While having more flexibility than persistence in handling
different time series patterns, ARIMA is one the most powerful models
for forecasting future values of a variable based on univariate past values
of time series (auto-regression model) and past forecast errors in a
regression-like model (moving average model). It is noted that ARIMA
forecasting performs best in situations with irregular irradiance pat-
terns, whereas persistence forecasting performs better in conditions of
dense cloud cover or clear sky. The hybrid algorithm chooses the
optimal solution adaptively and hierarchically depending on both
persistence and ARIMA. In subsequent work, Nobre et al. [89] studied
the performance of PV modules in the tropical and highly dense envi-
ronment of Singapore. The architecture of this study based on Nobre’s
Thesis [90] is presented in Fig. 9, which would be practical for re-
searchers to develop this subject in their regions of interest with specific
PV technologies. Various factors, including PV structure, temperature,
shading, long-term degradation, and pollution concentration, were
considered to model short-term solar forecasting of reliable PV power
generation. Also, the Perez model [97] was employed for short-term
irradiance forecasting and generating POAI In this study, persistence
(yearly average normalized RMSE in this study is 30.8%) and ARIMA
(yearly average nRMSE:30%) [160] forecasting were proposed for
determining future changes in PV power conversion. Finally, the model
was tested using a hybrid ARIMA-persistence forecast approach (yearly
average nRMSE:29%) by considering various factors recorded using a
meteorological sensing network in the understudied area. Their results
showed that an integrated method containing a climate measuring sys-
tem and a storm alarm system (based on ambient humidity and air
pressure) can provide better results with the lowest errors. Moreover,
the results of the nRMSE showed that the integrated method is more
reliable than the persistence and ARIMA methods separately.

In recent years, in the light of short-term forecasting and data science
methods, a feed-forward-multi-layer ANN [92] was employed by Jun-
hyuk et al. [91] to forecast the output of PV power plants considering PM
parameters. PCC analysis was applied to meteorological data to verify
correlations between output and PM. The input layers in their model are
irradiance, weather data, PM concentration, measured PV power gen-
eration in the past. They managed to improve the accuracy of PV power
generation by developing some models. Furthermore, a machine
learning support vector regression (SVR) algorithm [92, 93] utilized by
Liu et al. [74] to establish a direct link between climatic variables and PV
output, thereby improving the precision of PV generation. SVR is based
on support vector machine (SVM) concepts, which is best suitable for
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linear data. To analyse meteorological elements and calculate PM con-
centration values, the weather research and forecasting coupled with
chemistry (WRF-CHEM) [75, 76] was employed as well. Their proposed
forecasting model is shown in Fig. 10. Their results indicated that the
suggested method could significantly enhance the accuracy of PV power
forecasting under haze, consequently assisting the dispatch and opera-
tion of the power grid.

Although preliminary works have been done to forecast future im-
plications of haze on PV power generation, more comprehensive
research should be conducted on different Al methodologies, especially
in the area of "long-term forecasting" to prepare appropriate tools, plans,
and strategies for solar energy investors and stack holders predicting the
impact of aerosol on their future projects. For future studies, advanced
ANN methods can be developed for accurate forecasting, such as multi-
layer perceptron (MLP) models [161]. Of particular interest is to
investigate the impacts of future PV penetration on a haze positive
feedback loop. As more PV is deployed to offset coal and natural
gas-fired power plants [162, 163], as PV-powered heat pumps offset
natural gas furnaces [164-167] and as PV is used for smart charging of
electric vehicles that displace gasoline and deisel vehicles [168-172], PV
perfromance would be expected to increase based on redution in haze
from these sources. This would improve the PV system economic per-
formance and thus accelerate the replacement of polluting fossil-fuel
sources of energy with more solar PV. It is worth noticing that the
studies in this context are limited to PV technology. Further in-
vestigations can also be conducted on other solar energy technologies
such as low-concentration PV (LCPV) [173-177], high-concentration PV
(HCPV) or concentrated solar power (CSP) [117, 118, 147, 148].

3. Worldwide effects of haze on the output OF PV systems
3.1. Geographical-associated haze

Some countries naturally experience haze owing to their specific
geographic characteristics. Others are caused by human activity. For
example, Singapore [79, 89], Malaysia [40, 105], Australia [15], Can-
ada [16] and the U.S. [83]. suffer from bushfire smoke resulting from
human-made forest fires or agricultural burns. China [24, 71, 110, 112]
and India [42, 55, 178] are undergoing urban haze due to pollution from
high population densities and intense rates of industrialization with
limited emission regulations and controls. There are reports regarding
bushfire haze and urban effects on PV systems in these countries. Nobre
etal. [79] evaluated the effects of haze on the efficiency of PV modules in
Singapore [79], which indicated that GHI levels decreased by 15%
during a June 2013 haze occurrence. While the g, was marginally
higher during haze periods than on clear sky days, module temperature
was lower, most likely due to a reduction in direct irradiance reaching
the module surfaces.

Solar energy is typically considered to be approximately constant
over long periods. However, there is clear evidence for significant multi-
decadal changes, called ’global dimming and brightening’, because of
variations in cloud features and aerosol concentrations in the atmo-
sphere [179, 180]. Rising anthropogenic aerosol emissions are a major
source of significant dimming in fast-growing and polluted places like
China.

In 2017, Li et al. [24] reported a significant depletion in PV output
due to aerosols in China. Notably, in the Eastern Grid of China, the most
significant impact on the direct irradiance could be observed, where it
relatively dropped by 80%. The evidence from [24] highlighted that
considering the high demand for electricity and severe air pollution in
Western China, aerosols affected this area by reducing POAI up to 35%.
In the evaluations of the impact of aerosols on tracking systems, with
respect to the point that tracking systems mainly operate with direct
irradiance, it was shown that aerosols decreased the electricity output of
tracking PV systems more (both one and two axes tracking systems)
more than when compared to fixed arrays systems. It was indicated that



S.A. Sadat et al. and Sustainable Energy Reviews 167 (2022) 112796

R,
R

Meteorological sensing network Challen;gzse::tli:)\; 2

o G.HI ,DHI and DNI e PV system modeling
® Air pressure e Losses caused by temperature
e Ambient temperature o Shading influences
¢ Relative humidity o Soiling losses
¢ In-plane global irradiance o Long-term degradation
e CurrentDC o Irradiance losses due to air
* Voltage DC pollution and Haze
e Power AC
e Module temperature

v v v v

Fast increase of
7-9 am No 7-9 am No 5 - No
0 — ! b —
e 00 —_— H,,, island >90% H,,,; or Air, exceeding the 0.4<K,<0.7
threshold
| | |
Yes Yes Yes
v v y

NO
No
@9 am onward @ 9 am onward Validation station

v results

opamionward Persistence based on Persistence based on
H islan(;v >90% — validation station validation station <+——

=" - results results

|

Yes
A\
H,,,;, validation
station<80%
L

——

Persistence
‘Washout remains

Fig. 9. Structure of Andre M. Nobre’s methodology to forecast PV power generation in tropical climate zone (Figure reproduced from [89, 90]).

15



S.A. Sadat et al.

Offline training

Online training

Data collecting (Historical
weather)

¥

Processing data

L]

Data collecting (Historical PM2.5)

]

Processing data

|

Training SVR model

WREF for estimating
meteorological elements

WRF-CHEM for estimating
PM?2.5 concentration

PV short-term power forecasting
based on SVR

[Short term power forecasting]
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there is an average 21% reduction of POAI for fixed systems and 34% for
two axes over eastern China yearly. The vital role of clouds on surface
radiation was also observed, where during the winter, the impact of
aerosols on solar resources over the Northern Grid and the Eastern Grid
of China is the same as clouds. They concluded that when considering
the high potential of western China for solar energy generation, signif-
icant impacts of aerosols on direct POAI across this region should be
considered.

In 2019, Sweerts et al. [110] concluded that air pollution resulted in
an average reduction of 11-15% in PV power potential between 1960
and 2015 in the mainland of China. The link between observed surface
radiation and sulfur dioxide and black carbon emissions points to air
pollution control regulations and carbon footprints reduction strategies
as essential tools to increase surface irradiance. Their surprising results
imply that returning China’s radiation levels to those of the 1960s could
result in a 12-13% boost in PV energy generation in this country [110],
corresponding to an additional 14 TWh of power generated with 2016
PV capacity and 51-74 TWh with expected 2030 PV capacity. As of
2016, China had more than 445 million households [181, 182] each
person consumed almost 610 kWh [183](each household consumed
almost 1900 kWh; therefore, that 14 TWh of PV losses caused by urban
haze in 2016, could provide additional electricity of more than 7.3
million households in that year or almost 23 million people. Finally,
upon reaching surface irradiance levels of 1960 could yield economic
gains of US$1.9 billion in 2016 and US$4.6-6.7 billion in 2030. These
results raise important questions about liability for polluters that are
responsible for the economic losses resulting from pollution-caused haze
on PV owners. This is an area important to policy makers for future
work.

Del Hoyo et al. [27] in 2020 showed that haze decreased GHI and DNI
by 3.5 % and 14.1% in Chile, respectively, while DHI increased by 35.4%
simultaneously. Mono c-Si and a-Si PV technologies experienced a 7.2%
and 8.7% reduction in their annual outputs. Finally, a noteworthy
impact on PV modules due to aerosols has been reported in Chile [27], in
which CPV power production was primarily affected by aerosols. i.e., a
16.4 % reduction in the annual output of this system was measured. This
is in line with Li et al. [24] results because of more sensitivity of CPV
systems to DNI, as previously reported that DNI decreased more than
GHI and DHI, hence this outcome is evident. Son et al. at the same time
[151] showed that PM10 and PM2.5 lead to a reduction in power gen-
eration by 14.2% - 14.9% for Yeongam installation and 9.8% - 16.1% for
Eunpyeong installation in South Korea, respectively. Recent studies in
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China show severe effects of urban and anthropogenic haze on PV sys-
tems. Wu et al. [112] implied that the PV output of power plants in
Hangzhou, decreased by 5.25 + 1.19% and 6 + 1.16% due to urban
haze in 2017 and 2018, respectively. Furthermore, the effect of urban
haze on PV power plants was more severe in Tianjin, where had expe-
rienced PV power reduction of 8.77 + 0.9% for one year since Dec 2018.

3.2. Global haze

It is clear that the haze phenomenon is not limited to specific
countries and is common worldwide. Shaddick et al. [184] reported that
half of the world’s population is experiencing increasing air pollution.
Global haze as well [185] contributed to the growing trends in global
warming, and these two are tied together. As PV performance also de-
creases with temperature, global warming, in general, reduces PV per-
formance (although in snowy regions, it can decrease snow-related
losses [186-191]). There are comprehensive studies in the literature
covering the worldwide haze in their investigations of PV systems.
Bergin et al. [55] in 2017 reported that PM affecting PV systems is pri-
marily constituted of dust (92%), minor contributions from organic
carbon (4%), ions (4%), and elemental carbon (0.01%). They proved
that ambient and deposited PM on PV modules (i.e. soiling) have almost
the same contributions in decreasing PV energy production [55].

In Fig. 11, there are important results discussed by Bergin et al. [55],
which illustrates the effect of deposited and ambient PM on the trend in
available energy for annual solar energy generation worldwide. Gener-
ally, both dusty and polluted regions have experienced noticeable ef-
fects, with significant declines in northern India, which is affected by
both. Finally, their findings imply huge destructive impacts (irradiation
degradation and soiling) of urban PM on PV performance, where a 17-25
% reduction in energy production has been reported across India (~1
GW loss) and China (~11 GW loss).

In 2018, Peters et al. [42] showed that Delhi, Beijing, and Singapore
could experience a reduction of solar irradiance of 11.5 %, 9.1 %, and
2%, respectively. For other locations, Fig. 12 illustrates relative insola-
tion losses, Ppy reductions, and POAI absolute values along with the
losses in POAI. A method is needed whereby the economic losses for PV
power generators would be compensated by prorating the liability of
haze generators by their ratio of total emissions. Considerably more
research is needed in this area, although there have been some attempts
to quantify the economic losses PV generators suffer from haze in
addition to those mentioned above. Peters et al. [42] estimations on
revenue losses to PV power plants stack holders caused by urban haze in
2016, revealed about 0.78, 0.37, 2.4, 2.1, and 5.9-9.3 U.S. million dol-
lars losses for Delhi (India), Kolkata (India), Beijing (China), Shanghai
(China) and Los Angeles (US), respectively [42, 192, 193].

A recent study by Peters and Buonassisi [59] indicated that by the
end of the century, the reduction in PV power performance considering
different scenarios can range between 0.37 % and 2.5 % [0.37 % to 1.25
% for CdTe and 0.7 to 2.5 % for c¢-Si] due to the presence of water and
aerosols in the atmosphere and global temperature rise. A specific
objective for PV installations is to continue to focus on more efficient
solar cell technologies and the development of solar energy infrastruc-
ture. In Fig. 13a by Peters and Buonassisi [59], a consistently more
significant drop in insolation of east of 100 °E is seen, with insolation
reduces by almost 0.8 W/m? per year compared to the remaining re-
gions. Additionally, an average global warming rate of 0.02 K per year
was derived. As demonstrated in Fig. 13b, an upsurge in TPW is
observed, which results in the reduction of T7py throughout the majority
of the Northern and Southern hemispheres. On the other hand, the ex-
amination of Typp points to more transmission in most of the earth. It
was, however, noted that transmission changes due to aerosols are the
most difficult to quantify. As a final point displayed in Fig. 13c, yields
increased in South America and Africa and some regions of Europe but
decreased in Northern Africa and America, whereas PR for the investi-
gated Si PV technology decreased by an average of 0.04 % annually from
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Fig. 11. Annual reduced visible solar energy as a result of ambient and accumulated particulate matter (figure from [55

March 2016 in Ahmadabad, India)

2006 to 2015.

Table 4 summarises a wide range of publications from all over the
world collaborating to understand the impact of haze on PV perfor-
mance by comparing year of publication, their location of study, time
span of analysis and experiments, the used solar technology and module
settings, haze concentration within the period of analysis, haze degra-
dation indicator such as P,y, CF, or POAI, and reduction rate in the
parameters along with reasons for the degradation.

4. Solutions to haze

There are well-known solutions in the literature to overcome haze
and its associated consequences on PV power plants, including miti-
gating air pollution levels by employing renewable energy sources [24,
112] and preventing and controlling dust storms [28, 40, 195-199] and
bushfires [26, 40, 46, 105, 200-203]. Since haze is mainly caused by
emissions, defining policy measures and plans to reach net-zero carbon
will have a positive impact not only on increased temperature losses on
PV but also on haze-related PV losses. Furthermore, it is clear that na-
tional and local strategies and policies in each country to reduce carbon
and PM emissions would positively impact PV performance. For
example, polluted cities such as Delhi and Beijing are more affected by
the haze. Numerous policymakers are now taking action to address air
pollution concerns in these cities. As many cities across the world have
proven that committed policies and the utilization of renewable energy
systems can enhance air quality. Vitoria-Gasteiz in Spain, Montreal in
Canada, Lisbon in Portugal, Medellin in Colombia, and Seoul in South
Korea are notable examples of cities that have reduced air pollution from
28% to 63% [204]. China has established an effective plan against
anthropogenic haze, which appears to be working in areas such as Bei-
jing and Tianjin [42, 205, 206]. In places where anthropogenic haze is a
significant issue, emissions restrictions would also be required to boost
solar energy generation. Similar to concerns of carbon emissions liability
[207-214], as PV power generation becomes more ubiquitous, there are
unanswered questions about the liability of haze generators for
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reduction in output of both PV systems (as well as the reductions in
agricultural output in India [215, 216], the U.S. [217, 218], and China
[219, 220]). Decision-makers should implement pollution controls in
light of the enormous potential benefits to public health, air quality and
solar energy generation [55]. For example, by replacing all coal-fired
power plants with PV in the U.S. generating an equivalent amount of
electricity, over 52,000 premature deaths per year would be prevented
[221]. Globally, high levels of political efforts have been made such as
2015 United Nations climate change conference (COP 21) [222] and
COP 26 [223]. Serious actions to reach these conferences’ goals, how-
ever, must be taken.

Other important solutions are to deploy more efficiencient technol-
ogies for areas frequently experiencing haze or develop and use new
solar energy technologies with higher efficiencies. As discussed in this
paper, higher band-gap PV technologies are more vulnerable to haze.
This outcome could lead to PV manufacturers designing PV modules that
perform better (efficiency-wise) in the regions that experience frequent
haze, as proposed by Zhang et al. [49]. Moreover, in terms of electricity
grid reliability, and because scattering and extinction of light caused by
air pollution reduce the available solar resource, current solar-powered
applications operating under haze conditions have reliability concerns
that are an obstacle to distributed solar energy power grid [42, 224,
225]. Hence, a more reliable electricity grid can be had by increasing the
efficiency of solar cells and reducing PV systems’ vulnerability to haze
[59].

The accumulation of haze particles on PV modules (considered
soiling) is a considerable effect that should not be neglected. A study by
Bergin et al. [55] proves that increasing the time for solar panels
cleaning could reduce the output of these systems considerably, high-
lighting the significance of solar PV system cleaning in areas with high
levels of dust and anthropogenic PM. As a result, a cleaning schedule
should be a point of attention for solar power plants in some regions to
reduce losses. Different cleaning methodologies have been presented in
the literature [226-231] and employing new efficient technologies for
dust removal and cleaning can be convenient way to overcome problems
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Fig. 12. Relative insolation losses for 16 cities, Ppy, joss and POAI with absolute loss in POAI (data from [42]).

associated with soiling, such as electrostatic dust removal system (EDS) and aerosol concentration) by defining relationships between PV
[232, 233], robotic cleaning [234], or anti-soiling coatings such as super output and haze concentration by investigating I-V characteristics.
hydrophobic [235] and super hydrophilic materials [236]. 4. Both short-term and long-term forecasting of haze implications on
PV modules can be developed based on Al methodologies to prepare
applicable tools and strategies for solar energy investors. For
instance, advanced ANN such as MLP [161] methods can be devel-
Researchers have made great efforts to quantify the impact of haze oped for accurate forecasting of PV power plants experiencing severe
on PV energy generation, there are still numerous research gaps in this haze.
context, which are crucial to be addressed in the future to help accel- 5. For future studies, impact of haze on spectral albedo [237-240] and
erate a sustainable future. According to the comprehensive literature its consequences on PV output should be investigated in more refined
review performed here, the following insghts can be suggested in future researches.
studies: 6. Forecasting the impact of haze on the other solar energy technologies
such as LCPV-HCPV [117, 118, 147, 148, 173-177] should be dis-
cussed in the future.

5. Future studies

1. Sizing of PV power plants for different climate zones should consider

haze and air pollution in the future, as different PV technologies sre
affected differently by haze. For example, for low pollution regions,
higher bandgap solar cells may be the optimal choice.

. New clear sky models such as [128] can be used for investigating the
effect of haze on PV modules and their results can be compared to
previously used models [27, 77, 79].

. Controlled indoor experiments in laboratory conditions can be con-
ducted to correlate PV output and haze density (particulate matter

. The role of different weather conditions such as rainy, cloudy

weather and snowy weather conditions on the impacts of haze on PV
generation has not been investigated yet. In furture studies, corre-
lation between various weather conditions and haze can be consid-
ered to obtain a more complete understanding of the impact of haze
on PV power generation.

. Developing energy policy is needed that provides useful strategies to

minimize haze and air pollution in communities, such as China Air
Oollution Plan [42, 205, 206], which reduces haze effects on the PV
industry. For example, future research studying the effects of haze on
PV modules should cover financial analysis based on the levelized
cost of electricity to quantify the liability for haze-generating

3 Direct link: https://pubs.acs.org/doi/10.1021, Further permissions related
to the material excerpted should be directed to the ACS.
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pollutors to promote sustainable development of renewable enegy
across the world.

9. More research is required for regions lacking information of the ef-
fects of local haze and PV. Most of the research articles are limited to
eastern Asia and China. Developing and reproducing these studies in
other countries are required, particularly in the global south. For
example, Australia, one of the pioneer countries in solar energy
penetration [241], has recently suffered from bushfires and haze
induced by these bushfires, while research on the impacts of PV there
are lacking. One limitation to the deployment of such studies is the
high cost of scientific equipment. In addition, to the satellite based
approaches discussed above it is also possible to reduce the costs of
experimental equipment with low open source cost climate stations
[242] that helps improve the accessibility to underfunded scientists.

6. Conclusion and recommendation

This review paper conducted a thorough investigation on different
methodologies that examine the effects of haze on PV energy generation,
distinguished the critical results, and identified the research gaps. A
variety of methods based on data analysis and experiments have been
employed in the literature to examine potential changes in irradiance,
spectrum and the output of PV technologies due to haze. Robust tools
such as pvlib and GSEE can be employed for investigating the potential
effects of haze on PV energy generation. It has been shown that aerosols,
PM, and haze can considerably reduce PV systems’ output. Core findings
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in the literature can be reported as follows:

1) Reduction in irradiance is the most dominant contribution of haze,
followed by spectrum changes and soiling of PM in haze events.

2) Generally, attenuation caused by haze in solar energy resources has
been reported in the literature based on real-world data collection
(up to 80% due to urban haze and 40% because of bushfire smoke).

3) Due to spectrum changes, higher bandgap PV technologies are by 20-
40% more affected by the presence of haze and aerosols in the at-
mosphere than low bandgap semiconductors. Therefore, designing
and establishing power plants in regions that experience haze pe-
riods frequently would be more complicated, and more factors such
as the spectral impacts should be considered.

4) Substantial annual revenue loss to PV installers for different cities
around the world in the scale of US million dollars have been found
based on electricity value and local haze values. Although questions
remain about the liability or polluters that results in haze-related PV
losses.

5) DNI is more heavily affected by haze. Therefore tracking and
concentrated solar energy systems would be more affected by the
haze than fixed tilt angle systems.
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Table.4
Summary of reports on the impact of haze on PV energy generation.
Year Location Duration PV Technology Module Setting PM Concentration Target Rate of Reduction Reason of Ref.
of Analysis range (PM10, PM2.5, Parameter (s) by haze [%] Reduction
PSI, AQI, or API)
2001 Iran 10 months Mono c-Si, Different tilt Not reported Poue [W] Up to 60 % Urban haze and [104]
Multi c-Si, Thin angles Pollution
film
2014  Singapore 1 month a-Si Optimum angle Avg. PSI ~50-200 PR [%] Up to 7 % for a-Si, Bushfire smoke [26]
c-Si ~ 0 % for c-Si
2014  Singapore 1 month Single-j a-Si, Optimum angle Avg. PSI ~50-200 EIR ~ 2% for a-Si, Bushfire smoke [46]
CdTe, =~ 2% for CdTe,
CIGS, ~ 0% for CIGS,
Double-j Slight increase for
micromorph Si micromorph Si
2015 Malaysia 1 month Mono c-Si Tracking PV, Max API=231 Poye [W] 30 % for fixed Mono Fire smoke [103]
Fixed PV Min API=65 c-Si,
Avg. API=143 25 % for tracking
Mono c-Si
2016 Singapore 1 month c-Si wafer- Optimum angle Avg. PSI ~ 50-200 Py [W] Up to 25 % Bushfire smoke [89]
based
2016  Singapore 18 days Mono c-Si Optimum angle, Avg. PSI ~ 50-200 Y [kWh/kWp] ~ 15 % mono c-Si, Bushfire smoke [79]
Multi c-Si Different tilt Up to 18.4 % multi
angles c-Si,
Mono hetero-j ~ 18.7 % multi c-Si
Het,
Single-j a-Si Up to 21.4 % single-
J
Triple-j a-Si Up to 24.7 % triple-
J
Micro c-Si thin- ~ 25.3 % micro c-Si
film thin film
2016 China 1 year PV (not Optimum angle PM2.5 (0- 35) pg/m3 Py [W] ~ 0 ref Urban haze [194]
reported) PM2.5 (35 -75) pg/ ~ 6.5 %
m3
PM2.5 (75-115) pg/ ~71%
m3
PM2.5(115-250) pg/ ~ 30 %
m3
2017 Worldwide 1-3 months Thin film CIS, Horizontal fixed - Available 17-25% Urban haze [55]
Multi c-Si energy for solar
generation
[GW]
2017 Malaysia 1 months Mono c-Si Optimum angle Max PM 10=275.2 Poye [W] 17.8 % Bushfire smoke [105]
pg/m*
Min PM 10=23.2 pg/
m3
Avg. PM 10=105.6
pg/m*
2017  China 12 years PV, Optimum angle Not reported POAI [kWh/ Up to 80 % for Urban haze [24]
CSP fixed, One axis m2/ day] direct POAI
tracking, Two axes 25-35 % for average
tracking POAI
2018 Different 19 months Si-PV Optimum angle PM2.5 (50- 400) pg/ Absorbed 3.9-12.2 % Si-PV, Urban haze [42]
locations GaAs fixed m? photon flux [1/ 4.8-15.0 % GaAs,
CdTe m?s] 5.2-16.1 % CdTe,
Perovskite 5.5-17.2 %
Perovskite
2018 India 18 months Si PV Optimum angle For every PM2.5 100 Q Annuat [KWh/ 124+3% Urban haze [178]
pg/m?® m?/day]
Over 18 months 11.5%
2019 China 55 years PV (not Horizontal fixed, Not reported CF [%] 11-15% Urban haze [110]
reported) Optimum angle
fixed, Horizontal
tracking,
2020 Chile 2 years Mono c-Si Optimum angle Not reported Pous Ppy, Pcpy 7.2 % mono c-Si Urban haze [27]1
for PV [W] annually,
a-Si 8.7 % a-Si annually,
CPV 16.4 % CPV
annually,
2020  China 2 years PV (not Optimum angle PM2.5 (25- 41) pg/ Ppy [W] ~ 0 ref Urban haze [112]
reported) m?
PM2.5 (71- 109) pg/ ~ 6.14 %
m3
PM2.5 (125- 183)pg/ ~ 19.57 %
m3
~ 46.1 %

(continued on next page)
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Table.4 (continued)
Year Location Duration PV Technology Module Setting PM Concentration Target Rate of Reduction Reason of Ref.
of Analysis range (PM10, PM2.5,  Parameter (s) by haze [%] Reduction
PSI, AQI, or API)
PM2.5 (156- 218)
pg/m*
Total 5.25-8.77%
annually
2020  Republic of 3 years PV (not Optimum angle PM2.5 of 15 pg/m> Poye [W] 9.8-16.1 % Urban haze [151]
Korea reported) and PM10 of 30 pg/
m3
PM2.5 of 75 pg/m® 15.6-23.7 %
and PM10 150 pg/m*
2020  China 4 years PV (not Optimum angle Avg. PM 2.5= 50.8- G [kWh/m?/ 7t021.8%annually  Urban haze [71]
reported), CPV  Fixed for PV 99.5 pg/m® day]
2020 Italy 19 months PV (not Optimum angle PM 2.5 mainly up to Q Annuat [KWh/ 5 % annually Urban haze [157]
reported) 50 pg/m> m?/day]
2021 USA 15 months PV (not Optimum angle PM2.5 (50- 200) pg/ PouuPpy [W] 9.4-37.8 % Bushfire smoke [83]
reported) m>
2021 China 3 months PV (not Optimum angle PM 2.5= 73 pg/m° Py [W] 39.7 % Urban haze [106]
reported) PM 2.5= 105 pg/m* 49.6 %
Avg. PM 2.5= 35-75 Totally 8.1 %
pg/m®
2021 Worldwide 10 years, ¢-Si, CdTe Not discussed Not reported PR [%] From 2006-2015 Haze, [59]
100 years (10 years):0.4 % atmospheric
By end of century water and global
(2100): 0.7-2.5 % c- warming

Si, 0.38-1.25 %
CdTe

the work reported in this paper.
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