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A B S T R A C T   

Solar photovoltaic (PV) deployments are growing rapidly to provide a sustainable source of electricity, but their 
output is strongly impacted by environmental phenomena such as soiling and low irradiance conditions induced 
by haze from urban sources, dust, and bushfire smoke. This review examines the effects of haze on PV perfor
mance, highlights significant results, and identifies apparent research gaps in the current literature. In addition to 
the severe health issues caused by industrial exhausted aerosol, dust storms particles, and bushfire smoke, 
reduction in irradiance (in some cases up to 80%) is the most dominant impact of these sources of haze. Haze also 
causes changes in the received solar spectrum, and higher bandgap PV materials are more affected by the 
presence of haze and aerosols in the atmosphere by 20-40% than low bandgap semiconductors. In many cities 
throughout the world, pollution-related haze causes substantial annual revenue loss to PV operators. In addition, 
haze imposes severe effects on direct irradiance; therefore, tracking systems and concentrated PV systems are 
most affected. These technical impacts of haze all indicate the need for careful customization of PV systems for 
specific locations. In addition, to increase global PV output, it is clear that air pollution control regulations such 
as China’s national policies against air pollution and eco-friendly international actions such as COP26 should be 
employed and executed. Further studies are needed including indoor experiments, forecasting future implica
tions of aerosols on PV energy conversion, and performing energy policy analysis to identify associated chal
lenges and propose practical strategies.   

1. Introduction 

There has been a significant increase in the solar photovoltaic (PV) 
installed capacity worldwide, increasing from 41 GW in 2010 to 716 GW 
by the end of 2020 [1], with a continuous trend of exceeding expecta
tions [2, 3]. For example, China has increased capacity from 1 GW in 
2010 to 254 GW by 2020, while the United States has progressed from 3 
GW PV in 2010 to 74 GW by 2020 [4]. This growth is being driven by the 
levelized cost of electricity (LCOE) [5], which is highly dependent on 
long term performance (e.g. lifetimes of 25 years or more [6]). There are 
numerous threats to the rated performance of PV plants, and how these 
concerns are addressed is important [7-9] for long-term financing [10, 
11]. Among these, environmental factors are one of the most critical 
challenges. The meteorological conditions strongly impact the output of 
a PV system at the PV plant’s site, which might experience cloudy, rainy, 
and foggy conditions and reduced solar flux from haze [12]. Whereas 
these first three meteorological factors are natural, the latter detrimental 
factor of haze is often caused by humans through particulate matter 

(PM) pollution that has become a common phenomenon worldwide, 
especially in metropolitan areas. This PM pollution is due to three causes 
1) the high rate of industrial activities and other anthropogenic causes 
(e.g. urban haze) [13], 2) dust storms in deforested and arid regions 
[14], and 3) bushfire smoke [15]. The latter of which is now common in 
some countries during summer, such as the 2019–20 Australian [15] and 
2021 British Columbia bushfires seasons [16]. 

Haze from particles of all three sources can be suspended in air or 
deposited on surfaces. Urban haze (human-made or anthropogenic) 
typically consists of sulfur dioxide (SO2) or sulfate (SO4) and other 
hazardous gases [17]. Dust haze particles induced by sand storms consist 
of aluminum silicon oxide (AlSiO), silicon dioxide (SiO2) and calcium 
carbonate (CaCO3) [18]. Bushfire smoke compositions are mainly car
bon oxides and nitrogen oxides [19], which are often smaller than other 
atmospheric particles, such as water droplets, sand, or sea salt [20]. In 
addition to the severe health issues caused by industrial exhausted 
aerosols [21], dust storms particles [22], and bushfire smoke [23], these 
phenomena cause significant losses in irradiance reaching the PV cells 
[24], spectrum changes [25, 26] and haze’s particle deposition, which 
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Nomenclature 

Abbreviations definitions 
a-Si Amorphous silicon 
a-Si:H Hydrogenated amorphous silicon 
AERONET Aerosol robotic network 
AlSiO Aluminum silicon oxide 
ANN Artificial neural network 
ARIMA Autoregressive integrated moving average 
ASTM American Society for Testing and Materials 
BP Back propagation neural network 
CaCO3 Calcium carbonate 
CdTe Cadmium telluride 
CERES Clouds and Earth’s Radiant Energy System 
CIGS Copper indium gallium selenide 
COP UnitedNations Climate Change Conference 
c-Si Crystalline silicon 
CSP Concentrated solar thermal power 
CPV Concentrated photovoltaic 
ECMWF European Centre for Medium-Range Weather Forecasts 

models 
GaAs Gallium arsenide 
GBDT Gradient boosted decision trees model 
GCM Global climate modeling 
GEM Global environmental multiscale 
GISS Goddard Institute for Space Studies 
GSEE Global Solar Energy estimator 
HCPV High-concentration PV 
ICPMS Inductively coupled mass spectrometry 
IEEE Institute of Electrical and Electronics Engineers 
InN Indium nitride 
J Junction 
LCPV Low-concentration PV 
LOESS Locally weighted scatterplot smoothing 
NASA The National Aeronautics and Space Administration 
NASA’s AIRS Atmospheric Infrared Sounder on NASA’s Aqua 

Satellite database 
NASA’s EOS NASA’s earth observing system 
NASA’s MAIAC Multi-angle implementation of atmospheric 

correction 
NASA’s MERRA Modern-era retrospective analysis for research and 

applications dataset 
NASA’s OMI NASA’s ozone monitoring instrument 
NO2 Nitrogen dioxide 
NREL National Renewable Energy Laboratory 
NWP Numerical weather prediction 
MAIAC Multiangle implementation of atmospheric correction 
MARS Multivariate adaptive regression splines 
MPP Maximum power point for a PV module 
PAR Photosynthetically active radiation 
PCC Pearson correlation coefficients 
PM Particulate matter 
PV Photovoltaic 
SARAH Surface solar radiation data set - Heliosat 
SiO2 Silicon dioxide 
SO2 Sulfur dioxide 
SO4 Sulfate 
STC Standard test conditions 
SVR Support vector regression 
TMY Typical meteorological year data 
UV Ultraviolet 
WRF Weather research and fore-casting models 

Parameters 
aPV Coefficient determined empirically that establishes the 

upper limit on module temperature when wind speeds are 
low and solar irradiance is high 

AM Air mass 
AMU Umbral air mass 
AOD Aerosol optical depth 
AOD 550 AOD at 550 nm 
AOD 550,U Umbral AOD at 550 nm 
API Air pollution index 
AQI Air quality index 
bPV Coefficient determined empirically at which module 

temperature decreases as wind speed increases 
CF Capacity factor (%) 
LCOE Levelized cost of energy [$] 
DHI Diffuse horizontal irradiance [W/m2] 
DNI Direct normal irradiance [W/m2], [MJ/m2/day] 
EfPM,abs PM mass absorption efficiency [m2/g] 
EfPM,scat PM scattering efficiency [m2/g] 
EIR Effective irradiance ratio (%) 
EIRISC

t Effective irradiance ratio based on short-circuit current 
(%) 

EIRMMF
t Effective irradiance ratio based on mismatch factor (%) 

ENAC AC output energy [J] 
G Solar irradiance [W/m2], [kWh/m2/day] 
G′ Irradiance of examined solar cell or module [W/m2] 
G0 Measured irradiance in clean day [W/m2] 
GHI Global horizontal irradiance [W/m2] 
G′

ISC Irradiance of examined solar cell or module calculated 
based on short circuit current [W/m2] 

Gmeasured Measured irradiance by sensor [W/m2] 
G′

MMF Irradiance calculated based on mismatch factor [W/m2] 
GPM2.5 Measured irradiance in hazy day [W/m2] 
Hamb Relative humidity [g/m3] 
i Index, represent specific element 
IRR Internal rate of return 
ISC Short circuit current [A ] 
Short-circuit current of AM1.5G spectrum [A ] 
IMeasured
MPP DC-generated current of PV module [A] 

INominal
SC Nominal ISC [A] 

IReal Spectrum
SC Short-circuit current of real world spectrum [A] 

MPM,T visible solar energy to the total mass loading within a 
specified time period [g/m2] 

MPM,i Mass loading of component i [g/m2] 
MMF Spectral mismatch factor 
n Number of elements in atmosphere 
NPV Net present value [$] 
nRMSE Normalized root mean square error 
P0 Nominal DC power of installed PV [W] 
PAC Output AC power [W] 
Pmax Maximum output power [W ] 
Pout Output power [W] 
PCPV Potential estimated CPV power output [W] 
PPV Potential estimated PV power output [W] 
PSTC PV module power at the standard test conditions [W] 
PBP Payback period 
POAI Point of array irradiance [W/m2], [kWh/m2/day] 
POAI0 Point of array reference irradiance [W/m2] 
PM 2.5 Mass of particles smaller than 2.5 μm [μg/m3] 
PM 10 Mass of particles smaller than 10 μm [μg/m3] 
PR Performance ratio (%) 
PSI Pollutant standards index 
Q Solar insolation [W/m2],[kWh/m2/day] 
R Coefficient of determination 
r1 Ratio of short-circuit current generated under real world 

spectrum (IReal Spectrum
SC ) and theoretical short-circuit current 
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also decrease conversion efficiency (η). Irradiance change caused by 
haze directly affects the power generation of PV plants (Pout), solar 
irradiance (G), insolation (Q), energy yield (Y), and conversion effi
ciency (η) [27]. For that reason, the first step in assessing PV power 
plants’ production should be calculating irradiation at the PV modules 
and spectrum variations after being affected by the aforementioned 
phenomena [25, 26]. Soiling can be considered a further outcome of 
haze [28], severely reducing power generated by PV systems from direct 
shading [28, 29]. A schematic illustration of the various impacts of haze 
on solar energy generation is shown in Fig. 1. 

Historically, PV systems were deployed in ideal environments, but as 
the economics of PV have improved, PV deployments have expanded to 
non-ideal locations, including those with substantial haze potential. As 
haze is such a widespread environmental concern and PV is now being 
deployed in these areas a review is needed to help provide clear guid
ance for best practices to developing PV in high-haze areas. To do this, 
this article provides a systematic literature review of PV electricity 

generation under haze and their impacts on solar cells is not yet avail
able. This paper is structured as follows: Section 2 comprehensively 
describes how researchers correlate haze concentration to PV output and 
what materials are needed for this purpose, discussing the methodolo
gies and approaches for analyzing the impacts of haze on PV systems. 
Section 3 discusses the effect of haze on the output PV power plants 
worldwide over the years and presents results from the literature. 
Finally, Section 4 discusses practical solutions for discussed problems 
concerning the impacts of haze on PV energy generation, and Section 5 
provides conclusions highlighting significant results, and suggestions for 
future work. 

1.1. Why haze affects PV energy generation 

To optimize PV system performance in suboptimal locations, it is 
essential to understand the physics behind the reduced performance of 
PV as a result of haze. First, PM suspended in the air prevents some 

generated under AM1.5G spectrum (IAM1.5G
SC ) 

r2 Ratio of DC-generated currents of PV modules (IMeasured
MPP ) to 

the short-circuit current generated under AM1.5G 
spectrum (IAM1.5G

SC ) 
RMSE Root mean square error 
SR Spectral response [A/W] 
SSA Single scattering albedo 
T Transmittance 
TAOD Light transmittance affected by aerosols 
TTPW Light transmittance affected by water in atmosphere 
t Time [s] 
TPW Total perceptible water 
VOC Open-circuit voltage [V] 
Vwind Wind velocity [m/s] 
Y Energy yield [kWh/kWp] 
Yf Final PV system yield [kWh/kWp] 
Yr Reference yield [kWh/kWp] 

Greek symbols 
ISCα The temperature coefficient related to the short-circuit 

current [1/◦C] 
α CPV Coefficient specific to CPV module [◦C/Wm− 2] 
β Particulate matter up scatter fraction 
Δθcnd Difference of the module temperature and the module’s 

back surface temperature at 1000 W/m2 irradiance level 
[◦C] 

δCPV Cell’s temperature coefficient for CPV model [1/◦C] 
εCPV Air mass coefficient for CPV model 
η Conversion efficiency (%) 
θ Temperature [◦C] 
θamb Ambient temperature [◦C] 
θ m Temperature of the module’s back surface [◦C] 
θ mod Module’s temperature [◦C] 
θavg

mod Annual module temperature [◦C] 
θSTC

mod Module’s temperature at STC conditions [◦C] 
φ CPV Aerosol optical depth coefficient for CPV model  

Fig.1. Schematic illustrations of the impact of haze on PV power generation.  
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sunlight from reaching the PV. When the concentration of PM increases, 
the optical depth (light transmission from the atmosphere to the Earth) 
is influenced, and consequently, the aerosol optical depth (AOD) will 
increase. AOD is the most critical parameter for analyzing the amount of 
solar radiation’s extinction by particles in the atmosphere. An increase 
in AOD contributes to a reduction of solar energy generation through 
direct radiative forcing (with scattering and absorption by atmospheric 
PM) and indirect radiative forcing (with changing cloud albedo as well 
as cloud lifetime), and lowering the light transmittance (T) [30-32] (see 
Fig. 2). Numerous studies have demonstrated a decrease in 
short-wavelength irradiance (Fig. 3) and photosynthetically active ra
diation (PAR) as AOD increases (such as in China [33], Australia [34] 
and Spain [35]). As a result of the aforementioned phenomena, the 
spectrum and irradiance intensity will change as a result of haze (Ray
leigh scattering [25]) (Fig. 3). This is the main reason behind the 
degradation in performance of PV systems by haze, which will be dis
cussed in Section 1.2. Haze can also lead to other phenomena degrading 
the output of PV systems, such as deposition of airborne particles on PV 
modules (soiling) and irradiance mismatch [irradiation deviation from 
standard test conditions (STC)]. Soiling is out of the scope of this review, 
and interested readers are referred to Refs. [36-41] for reviews and 
comprehensive articles on this topic. 

1.2. Change in spectrum and irradiance intensities 

Due to sun path geometry and weather conditions, the air mass (AM) 
changes during the day; hence PV systems will perform differently 
compared to STC AM1.5 conditions (See Fig. 3). These losses are typi
cally estimated at around 1% [44, 45]. During haze events, however, 
these effects are more severe, and PV systems are expected to experience 
more losses [26, 46]. These spectral shifting impacts will depend on the 
spectral response of the used PV technology [26, 46-48]. It should be 
noted that as the PM values increase, the intensity of the visible and UV 
range are greatly reduced while in the infrared intensity increases. 

To quantify these impacts, the performance ratio (PR) (Eq. 1) is used 
for assessing PV system performance and is calculated by: 

PR=
Yf

Yr
=

ENAC
P0∑ POAI
POAI0

=
POAI0

P0
×

∑
PAC

∑
POAI

(1) 

In Eq. 1, Yf is the final PV system yield, Yr is reference yield, ENAC is 
net AC output energy, P0 is nominal DC power of installed PV, PAC is the 
ac power of the PV system, POAI is in-plane irradiance, which can be 
measured by a sensor at the same orientation of the PV module, and 
POAI0 = 1000 W/m2 is reference irradiance. Another approach to 
describing this phenomenon is the annual effective irradiance ratio 
(EIR), which is: 

EIRt =

∑

t
G′

∑

t
G

(2) 

EIR is defined as the ratio between the effective irradiance intensity 
of examined solar cell (G’) and reference module irradiance (G) [46]. 

Consistent with the results shown in Fig. 3, Liu et al. [26] demon
strated that during an event of haze in Singapore in 2013, the reduction 
in irradiance was not uniform across the spectrum. The spectrum 
reaching PV modules was found to be considerably less blue-rich in the 
presence of haze than on a typical day [26]. They found a more signif
icant decrease in shorter wavelengths, which is the main reason for 
variations in PV generation in Singapore (particularly those of high 
bandgap PV thin film materials such as amorphous silicon (a-Si:H), 
cadmium telluride (CdTe) and copper indium gallium selenide (CIGS) 
[26, 46]). For example, the PR of a-Si:H PV decreased up to 7% in hazy 
weather conditions [26], while there was a constant trend in PR for 
crystalline silicon (c-Si) PV. The reason behind the good performance of 
c-Si under hazy conditions is that they have a higher spectral response 
(SR) at near-infrared wavelengths because of their relatively low 
bandgap (1.12 eV). PV cell materials with a lower band-gap like c-Si, 
indium nitride) InN(, etc. show a SR peak in the infrared region, whereas 
those with a larger band-gap closer to the ideal of AM1.5 spectrum have 
a maximum SR at higher photon energies (See Fig. 3). Therefore, this 
raises an important point that higher band-gap PV technologies are more 
vulnerable to haze, which may play a role in location optimized PV of 
the future [49]. On the other hand, without haze, the a-Si module per
forms better in Singapore. The reason is that the spectrum in Singapore 
is blue-rich [46]. Likewise as haze from pollution is reduced, optimal PV 
selection may shift to higher bandgap semiconductors for a particular 
region. In addition, whendesigning and establishing power plants in 
regions like Singapore, which experience haze frequently, optimal op
tical engineering is more complicated, and more factors should be 
considered [26]. 

According to Ye et al. [46], haze negatively influences the perfor
mance of some solar cell technologies as scattering of short-wavelength 
light decreases by aerosols and particles in the atmosphere (similar to 
Fig. 3) [50, 51]. During an event of haze, owing to a red-shift appeared 
in the irradiance spectrum, the EIR for a-Si systems decreased by 2%, 
CdTe modules experienced a slight decrease in EIR, while copper indium 
gallium selenide (CIGS) and double-j (jumction) micromorph solar cells 
(a-Si/μc-Si) were not affected [46]. 

Peters et al. [42] indicated that in Delhi, perovskites modules are 
affected most by haze following by CdTe, gallium arsenide (GaAs), and 
c-Si PV modules, i.e., GaAs, CdTe, and perovskite PV modules experi
enced 23 %, 33 %, and 42 % more losses in comparison with c-Si, 
respectively, because they depend on shorter wavelength light (also 
indicated in Fig. 3). This impact is slightly dependent on the haze of a 
given city as shown in Fig. 4. Another result previously illustrated in 
Fig. 3 by Peters et al. [42] shows the effect of fine particles equal or 
smaller than 2.5 μm (PM2.5) on the spectral irradiance compared to 
most common PV technologies spectral responses. This strongly verifies 
the aforementioned outcomes regarding the variation of the spectrum 
and decrease in shorter wavelengths irradiance, which is also in line 
with Rayleigh scattering theory [25] and other research indicating that 
there is higher absorption at short wavelengths because of nitrated and 
aromatic aerosols in haze [52]. Therefore, it is clear that PV power 
output exposed to haze mainly depends on the material technology used, 
where higher bandgap materials are more vulnerable to haze. 

2. HOW to correlate haze concentration to PV performance 

After the spectral impacts of haze on PV are understood, it is possible 
to correlate PV performance to haze concentration. Different factors 
contribute to haze concentration and important parameters affecting 
and affected by haze phenomena are summarised in Fig. 5. The primary 
material employed in the literature to define a correlation between haze 
concentration and PV performance is analysing of the data obtained by 
meteorological tools, such as satellites data or surface-based experi
ments, and modeling methods. 

As climatic phenomena are the primary variable with haze, meteo
rological tools are critical for PV research in this context. They provide 

Fig.2. Radiative forcing by scattering and absorption of solar radiation, 
changes in clouds albedo and lifetime owing to aerosols and clouds in 
the atmosphere. 
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essential data for the establishment of analysis to estimate solar irradi
ance extinction. Aiding data analysis methods, and mainly for data 
collection purposes, outdoor experiments are also conducted as field 
measurements during haze events or low irradiation periods. System 
performance modeling methods were widely developed to focus on 
meteorological and PV power plant data, addressing issues of solar 
power generation under haze, while spectrum measurements and 

calculations to investigate the effects of particulate matter on spectrum 
changes are also used in the literature, analysing potential spectral 
changes and their effect on PV power generation. 

Table 1 summarizes the tools, models, and methodologies utilized in 
the literature in this area, along with their specifications, aiding pro
spective researchers to employ these methods or develop new, improved 
methods for assessing the effect of haze on solar energy systems. 

Fig.3. Spectrum changes due to PM2.5 haze versus spectral responses of most common PV materials (data from [42, 43]).  

Fig. 4. Losses in photon flux absorbed by different PV technologies in different cities (adapted from data in [42]).  
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Particular attention and more information are devoted in the last col
umn of Table 1, e.g., noting if the tools are open source and can thus be 
more readily accessible to all researchers. 

2.1. Data collecting, analysis, and modeling 

2.1.1. Meteorological tools and models 

2.1.1.1. Satellite data. Satellite-derived data can be employed for 
obtaining meteorological information such as temperature as well as 
irradiance data. These data can be used as input for modeling methods, 
and accessing them increases the speed of investigations and avoids 
time-consuming site measurements. Some satellite data used in the 
literature are listed in Table 2. 

2.1.1.2. Light scattering estimation. Bergin et al. [55] studied the 
reduction induced by aerosols in light transmittance (T) and solar en
ergy generation. In the first step of their research, chemical character
istics of dust were determined using inductively coupled mass 
spectrometry (ICPMS) [127] for identifying up to 50 elemental com
ponents and the ASTM D5373-08 method to obtain total carbon, nitro
gen and hydrogen. Obtaining chemical characteristics helps researchers 
determine the fraction of carbon in the dust. Then, based on the 
modeling of PM radiative forcing proposed in the global climate 
modeling (GCM), losses due to PM were identified. GCM utilize Goddard 
Institute for Space Studies (GISS) ModelE2, which evaluates both DNI 
and DHI, takes into account the effects of clouds, and considers the 

effects of PM on the visible flux at the Earth’s surface. It is noteworthy 
that solar PV were considered fixed and horizontal in their assessments, 
yet in real-world applications, the tilt angle is generally higher partic
ularly as systems are deployed further from the equator. Modeling the 
impact of specific deposited particulate matters on solar energy re
sources was conducted based on Eq. 3, 

ΔT
MPM,t

= −
1

MPM,t

∑n

i=1

(
Ef (i)PM,abs + βEf (i)PM,scat

)

MPM,i (3)  

where ΔT/MPM,t refers to the transmittance changes (ΔT) of visible solar 
energy to the total mass loading within a specified time period (MPM,t), n 
stands for specific PM components (Ex. n=5 stands for five different 
components), MPM,i is the mass loading of component i, EfPM,abs and EfPM, 

scat are PM mass absorption and scattering efficiencies respectively and β 
represents particulate matter up scatter fraction. 

Peters and Buonassisi [59] studied the performance of PV solar cells 
by considering various factors affecting PV operation. In their study, 
various parameters influencing the light transmittance and PV systems, 
including water droplets and aerosols, were investigated between 2006 
and 2015. Different metrological parameters and their correlations are 
involved in quantifying the performance of PV modules such as Q, 
temperature (θ), total perceptible water (TPW), and AOD to study the 
relationship between these meteorological parameters. For considering 
the effect of TPW and AOD on T, light transmittance affected by water in 
the atmosphere (TTPW) and light transmittance affected by aerosols 
(TAOD) were calculated according to SMARTS2 [69, 70] in cloudless 

Fig.5. Main factors, parameters and materials needed for analysing haze concentration and PV energy generation under hazy weather conditions.11,22  
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Table.1 
Useful tools, methodologies and techniques for assessment of solar energy systems under haze used in the literature.  

Tools Methodology 

Usage Name Target Parameters Required Materials Remarks Refs. 

Meteorological Estimation of irradiance, 
weather data, light 
transmittance and AOD 

NASA Satellite 
datasets 

Global Horizontal 
Irradiance (GHI) (GHI), 
Diffuse horizontal 
irradiance (DHI), direct 
normal irradiance (DNI), 
T, AOD, Humidity, 
Temperature, SSA, 
Angstrom coefficient, 
Ground reflectance 

GISS GCM ModelE, MAIAC, 
OMI, MODIS, CERES, 
MERRA, MERRA-2, SARAH, 
MERRA-T2M, AIRS, EOS 

More information in Section 
3.1.1.1.GISS GCM ModelE is 
open-source. 

[24, 27, 
42, 
53-67] 

Estimation of irradiance SMARTS2 Estimating solar 
irradiance, light 
extinction, and 
transmittance 

Rayleigh scattering, aerosol 
extinction, and absorption by 
ozone, evenly mixed gases, 
water vapor, and NO2 

Open-source, Spectrum 
radiation model 

[27, 59, 
68-70] 

Estimating light extinction IMPROVE 
algorithm and its 
revised version 

Analysing light 
extinction 

PM 2.5, and meteorological 
data 

In the first IMPROVE 
algorithm, the assumption is 
that light absorption by gases 
is zero. The first algorithm is 
based on Rayleigh scattering, 
particle scattering, particle 
absorption. The revised 
IMPROVE algorithm has 
more accuracy with 
considering parameters such 
as sea salt effect and NO2 

light absorption impact. 

[71-73] 

Identifying and evaluating 
meteorological elements 

WRF-Chem Model the emission, 
transportation, mixing, 
and chemical 
transformation of 
aerosols 

Emission data Used in the literature to 
calculate PM 2.5 data 

[74-76] 

Filtering cloudy 
environment, Clear sky 
irradiance detection 

Reno and Hansen 
model 

Clear sky irradiances Actual irradiance datasets ✓Advantage: Detecting 
cloudy periods without 
misclassifying them as air 
pollution 
✓Available in Python 
(PVLIB) 
✓5-steps procedure discussed 
in Section 3.1.1.3 

[27, 77, 
78] 

Nobre et al. model Clear sky irradiances Actual irradiance datasets Based on three filters 
(defined in section in Section 
3.1.1.3): humidity filter, 
diffuse irradiance fraction 
filter and clean sky irradiance 
filter 

[79, 80] 

Data analysis 
and 
processing 

Irradiance and output power 
Calculation 

Yang et al. model Calculating DNI, GHI, 
and DHI 

Meteorological data (relative 
sunshine duration, surface 
pressure, perceptible water, 
global distribution of ozone 
thickness, global distribution 
of angstrom turbidity 
coefficient 

✓Improved 
Angstrom–Prescott model. 
✓Used by Zhou et al. for 
calculating DNI of CSP power 
plants 

[81, 82] 

PVLIB Calculating hourly clear 
sky irradiance (DNI, GHI, 
DHI and POAI), Pout, PR, 
and η. 

Satellite irradiance and 
weather data (aerosol, 
clouds, temperature and 
other meteorology data) 

✓Open-source, available in 
MATLAB and Python 
✓More information can be 
found in Section 3.1.3.1.2 

[24, 78, 
83-86] 

pvOps Data normalizing PV time-series data ✓Open-source, available in 
Python 

[83, 87] 

Rojas et al. model Estimating DNI, data 
quality control for 
irradiance dataset 

Historical irradiance data ✓Boland-Ridley-Lauret (BRL) 
model 

[27, 88] 

Predicting based on artificial 
intelligence (AI) 

Persistence 
method 

Irradiance and PV output 
forecasting 

Historical irradiance data, PV 
data 

✓Sutaible for dense cloud 
cover or clear sky 
✓More information can be 
found in Section 3.1.4 

[89, 90] 

Autoregressive 
integrated moving 
average (ARIMA) 

Irradiance and PV output 
forecasting 

Historical irradiance data, PV 
data 

✓Sutaible for irradiance data 
sets which have irregular 
paterns 
✓More information can be 
found in Section 3.1.4 

[89, 90] 

Combination of 
Persistence 
method and 
ARIMA 

Irradiance and PV output 
forecasting 

Historical irradiance data, PV 
data 

✓Leads to better and more 
accurate results compared to 
only Persistence or ARIMA, 
✓Firstly proposed by Nobre 

[89, 90] 

(continued on next page) 
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Table.1 (continued ) 

Tools Methodology 

Usage Name Target Parameters Required Materials Remarks Refs. 

et al. 2016 
✓More information can be 
found in section 3.1.4 

Artificial neural 
network (ANN) 

Forecasting the output of 
PV systems under haze 

PV data ✓Multi-layer ANN was used 
in the literature for 
forecasting PV output under 
haze 
✓More information can be 
found in Section 3.1.4 

[91, 92] 

Support vector 
regression (SVR) 

Forecasting the output of 
PV systems under haze 

PV data ✓Used in the proposed 
literature to establish 
relationship between 
meteorological data and PV 
output 
✓More information can be 
found in Section 3.1.4 

[74, 92, 
93] 

CatBoost Irradiance predicting Historical irradiance data ✓Open-source 
✓Random forest and gradient 
boosted decision trees 
(GBDT)-based method 

[81, 94, 
95] 

M5 model tree Irradiance prediction Historical irradiance data ✓Linear regression model 
✓For predicting continuous 
numerical attributes 

[81, 96] 

Perez et al. model GHI prediction model Meteorological data ✓Numerical weather 
prediction (NWP) model, 
averaged the global 
environmental multiscale 
(GEM), european centre for 
medium-range weather 
forecasts (ECMWF), and 
weather research and fore- 
casting (WRF) models. 
Peforms better than sole 
models. 
✓Used by Nobre et al. for 
generating GHI values 

[90, 97] 

Back propagation 
neural network 
(BP) 

Irradiance predicting Historical irradiance data ✓A 3-layer machine learning 
method for solar irradiance 
prediction 

[81, 98] 

Multivariate 
adaptive 
regression splines 
(MARS) 

Irradiance predicting Historical irradiance data ✓Based on regression 
analysis 

[81, 99] 

Correlating parameters locally weighted 
scatterplot 
smoothing 
(LOESS) and cubic 
smoothing splines 

Spectrum mesurements Spectrum data ✓In the literature it was used 
to analyse effect of spectrum 
variations on current 
generation, and compare 
actual and theoretical values 
of current. 
✓Multivariate linear 
regression analysis. 
✓More information can be 
found in Section 3.1.3.1.1 

[26, 71, 
100, 101] 

Pearson 
correlation 
coefficient (PCC) 

Verify the correlation 
established between 
parameters 

PV data ✓Measuring robustness of 
linear correlations 

[59, 91, 
102] 

Experiments Outdoor 
experiment 

Electrical Current and Voltage, 
Performance ratio (PR) 

I-V meter, software 
programs, utility grade 
energy meters, and data 
logger 

✓More information can be 
found in Section 3.1.2 

[26, 27, 
103-105] 

Irradiance Spectrum, irradiance 
(GHI,DHI, and DNI), and 
AOD 

Spectroradiometer, 
Pyranometer, Pyrheliometer, 
Sun photometer and 
AERONET 

✓More information can be 
found in Section 3.1.2 

[26, 27, 
106] 

Indoor 
experiment 

Chemical Chemical characteristics 
of aerosols 

Inductively coupled mass 
spectrometry (ICPMS) 
instrument, and ASTM 
D5373-08 method 

✓ICPMS for elemental 
components analyses, and 
✓ASTM D5373-08 method 
was conducted to identify 
share of total carbon, 
nitrogen and hydrogen 

[55] 

PV models 
and 
analysis 

Performance and output 
modeling 

Sandia PV Array 
Performance 
Model (SAPM) 

Calculate PV DC output Satellite irradiance and 
weather data 

✓Used in PVLIB [107] 

PV DC output ✓Used in PVLIB [108] 

(continued on next page) 
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conditions. In the Del Hoyo et al. study [27], a sun photometer with 
Aerosol Robotic Network (AERONET) was employed to obtain AOD 
values [27]. For this purpose, they used Multi-Angle Implementation of 
Atmospheric Correction (MAIAC) AOD by NASA, which employ satel
lites data from Moderate Resolution Imaging Spectroradiometer 
(MODIS) AQUA and NASA’S TERRA projects. The MAIAC consist of AOD 
values at 470 nm, 550 nm and water vapor data at spatial resolution of 1 
km. 

2.1.1.3. Clear sky modeling. Obtaining clear sky irradiance is necessary 
for assessments, as these values are compared to hazy days’ irradiance 
values. In the context of the effect of haze on PV energy systems, two 
efficient clear sky identification procedures were used, which are 
described here. For future research, new clear sky models such as 
[128-133], and their results in investigating haze can be compared and 
discussed [134]. A strong clean sky detection model was proposed by 
Reno and Hansen [77], and this method was used by Del Hoyo et al. [27] 
to reach clear sky irradiances. In the first step, days with GHI consid
erably below the mean value are classified as cloudy. The next criterion 
examines the maximum of GHI to discover periods when the GHI rises 
due to brightness induced by clouds, and then compare it with the clear 
sky model value. The third criterion compares the variation of a clear 
sky model compared to the variation of a time period. The fourth one 
investigates the maximum difference between GHI and the calculated 
irradiance by a clear sky model. The final criterion determines the 
standard deviation of GHI variations; defining periods as overcast if it 
exceeds 8W/m2. This model is available in the open source Python 
community-supported tool [27, 77, 78]. 

Moreover, a methodology based on three filters to obtain irradiance 
values on clear sky days (pollutant standards index (PSI)<50) was 
proposed by Nobre et al. [79] to study the effect of haze on PV 

Table.1 (continued ) 

Tools Methodology 

Usage Name Target Parameters Required Materials Remarks Refs. 

Sandia 
Performance 
Model for Grid 
Connected 
Photovoltaic 
Inverters 

Convert PV DC power to 
AC 

NREL model Power output POAI and temperature ✓More information can be 
found in Section 3.1.3.1.2 

[27, 109] 

Global Solar 
Energy Estimator 
(GSEE) 

Power output, CF Irradiance hourly datasets ✓Open-source, its software 
tool is available in renewable. 
ninja 
✓More information can be 
found in Section 3.1.3.1.2 

[62, 110, 
111] 

MATLAB Simulink Power output Irradiance and temperature 
data 

✓Firstly proposed by Wu et al. 
✓More information can be 
found in Section 3.1.3.1.2 

[112] 

POAI calculation PVLIB POAI Satellite irradiance and 
weather data (aerosol, 
clouds, temperature and 
other meteorology data) 

✓Li et al. used PVLIB for 
calculating POAI 
✓More information can be 
found in Section 3.1.3.1.2 

[24] 

Khoo et al. model POAI Satellite irradiance ✓Used by Nobre et al. for 
calculating POAI 

[89, 113] 

Isotropic-sky 
insolation 

Estimating POAI Irradiance datasets ✓Appropriate for overcast 
days 

[114, 
115] 

Anisotropic-all-sky 
model 

Estimating POAI Irradiance datasets ✓Appropriate for clear days [115, 
116] 

Enhanced 
anisotropic-all-sky 
model 

Estimating POAI Irradiance datasets ✓Proposed by Klucher 
✓Appropriate for both 
overcast days and clear days 

[115] 

CPV performance and 
output modeling 

Fernández et al. 
model 

Potential power output AM, AOD, temperature, DNI 
data 

✓Mathematical modeling of 
CPV potential spectral 
distribution and the electrical 
output 
✓More information can be 
found in Section 3.1.3.1.2 

[27, 117, 
118]  

Table.2 
Satellite-derived data used in the literature for experimenting haze impacts on 
PV.  

Dataset 
name 

Application in evaluating 
haze 

Availability Literature 
Reference 

NASA’S 
MAIAC 

AOD estimations, Data freely available on 
[119] 

[27, 53] 

NASA’s 
OMI with 
NASA’s 
MODIS 

AOD, single scattering 
albedo (SSA), Angstrom 
coefficient, ground 
reflectance estimations 

NASA’s OMI is 
available with 
registration [57, 120], 
MODIS data is freely 
available [58], MODIS 
script freely available 
[58] 

[59] 

GISS GCM 
ModelE 

Light transmittance 
estimations, 

Code freely available 
on [56, 121] 

[55] 

CERES Irradiance estimations Data freely available 
through [60, 122] 

[24, 42, 
59] 

MERRA Irradiance estimations Free access on [123] [61, 62] 
MERRA-2 Irradiance estimations Free access on [124] [62, 63] 
SARAH Irradiance estimations Data available through 

[125] 
[62, 64] 

MERRA- 
T2M 

Temperature data 
Used to estimate of θamb 

Free access on [124] [62] 

NASA’s 
AIRS and 
EOS 

Relative surface 
humidity and total 
perceptible water data 

Data available through 
[65, 126] 

[59]  

1 Ratio of observed GHI to the estimated GHI under clear sky conditions, both 
at ground level.  

2 Ratio of DHI to the GHI. 
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technology. These values are considered baseline days without haze. 
These clear sky days are identified by statistical analysis of recorded 
data. The humidity filter (as the first filter) is used to discard conditions 
with a relative humidity greater than 80%, which are related with rain 
or cloudy pre/post rainy conditions. After applying a humidity filter, a 
diffuse irradiance fraction filter is employed on all the data, which 
passed the previous filter to eliminate situations with diffuse irradiance 
fraction ratio (Kd) above 0.5 (high cloud cover and no rain). Finally, 
clean sky irradiance band filters were utilized to complete the 
above-mentioned filters by omitting previously verified irradiances that 
are not within a range of ±100 W/m2 clear sky values, defined by model 
[80] (circumstances with cloud enhancement effects). The arbitrary 
threshold of 100 W/m2 was chosen to consider more verified values, yet 
strict enough to delete points that are clearly outside the proposed range 
of the clear sky model. 

2.1.2. Experimental data 
If proposed data are not available by satellites or more accurate data 

are needed, site measurements and experiments can be employed. 
Conducting field measurements, local experiments, and systems moni
toring are needed to validate the haze models and theories and prepare 
the basis for future developments. Zagouras et al. [135] pointed to 
distributing ground sensing networks for optimal irradiance measuring. 
The meteorological network in Singapore employed by Nobre et al. [79, 
89] is an excellent example of these sensing networks, in which several 
stations (8 peripheral stations + 1 validation station) were used for data 
collection and validation during an haze observations in Singapore. 
Table 3 lists some instruments used by researchers in the literature to 
measure parameters affected by haze. 

There have been several experimental studies quantifying the PV 
energy loss due to haze. For example, Maghami et al. [103] studied the 
effect of air pollution particles on the power generation of fixed and 
tracking flat PV. Local weather stations recorded various meteorological 
parameters and Pout and Y were measured to obtain a relation between 
haze and solar power generation. Finally, multiple regression analysis 
[136] was used to confirm the correlation between meteorological pa
rameters and power generation losses. Maghami et al. [103] showed that 
fixed flat PV arrays are more suitable than the tracking flat PV array in a 
country like Malaysia with a tropical environment that experiences haze 
events frequently. 

In 2017, Abd Rahim et al. [105] carried out outdoor electrical ex
periments and economic analysis to assess the impact of bushfire smoke 
on PV performance in Malaysia. They measured the Pmax of a PV panel, 
irradiance (G), and module temperature (θmod) for two periods of hazy 
and clean sky conditions to quantify production losses in PV modules. 
They [105] reported 17.8 % decrease in PV module power output during 

a haze event. Based on economic analysis [105], an 8 % reduction in net 
present value (NPV), and a slight decrease in internal rate of return (IRR) 
were reported, while the payback period (PBP) increased around 10 % 
when haze was present in Malaysia for 6 months. Lastly, to determine 
the relationship between PV output and haze induced by wildfire, they 
used analysis of variance (ANOVA), which resulted in R square value of 
0.991921 [137]. In terms of electrical parameters, this study only dis
cussed I, V and Pmax., but future work could also evaluate the fill factor 
(FF). Recently, Chen et al. [106] studied the negative effects of haze on 
PV panels installed in Shanghai, China. In this study, the PM2.5 con
centration was recorded over a period of one year via an online local air 
quality system. Then, three months with the highest haze level were 
selected, and G was recorded for these months by a pyranometer. 
Finally, the correlation between haze, irradiance, and consequently, 
power generation of PV was investigated based on well-described 
methodologies [42, 79] to compare experimental results with esti
mated values. Chen et al. [106] showed that PM2.5 and G were inversely 
correlated. For PM2.5 concentration of 73 μg/m3, the irradiance and 
power generation reduction percentages were 38.6% and 39.7%, 
respectively (46.9% irradiance reduction and 49.6% power reduction 
for 105 μg/m3). Their financial analysis showed that the payback pe
riods with and without air pollution were 6.64 and 6.12 years, 
respectively. 

A closer look at the literature on the impact of haze on PV systems 
reveals several gaps and shortcomings, especially related to controlled 
indoor experiments. Conducting indoor experiments, for example, at 
laboratories with a dust chambers and solar simulators (particularly 
those with both intensity and spectral control), would be beneficial for 
establishing empirical linear and non-linear relationships between haze 
concentration and losses in PV power output. An extensive framework 
for future studies based on experimental studies and current research 
gaps in the literature is shown in Fig. 6 to demonstrate the outdoor and 
indoor electrical experiment procedures and compare the results with 
modeling methods. 

2.1.3. PV Modeling 

2.1.3.1. Theoretical modeling. A large number of theoretical or physical- 
based models are available in the literature for analysing the relation
ship between haze and PV energy degradation, such as Sandia PV Array 
Performance Model (SAPM) to calculate PV DC output [107] and Per
formance Model for Grid-Connected Photovoltaic Inverters to calculate 
PV AC output [108], both implemented in the open source pvlib and 
open source SAM [138]. The NREL equation [109] was used by Del Hoyo 
et al. [27] for potential estimated PV power output (PPV) estimation on 
hazy days (Eq. 11). These types of models can be employed for different 
locations and applications. In the following sections, the most appro
priate physical models for investigating the effect of haze on PV systems 
are discussed. 

2.1.3.1.1. Spectrum modeling. A novel spectral analysis was performed 
by Liu et al. [26]. They gathered data from PV power plants in Singapore 
for precise analysis and modeling to evaluate the impact of haze on the 
spectrum and solar irradiance. Therefore, r1 and r2 ratios are defined as 
follows: 

r1 =
IReal Spectrum

SC

IAM1.5G
SC

(4)  

IAM1.5G
SC =

INominal
SC

1000
× Gmeasured (5)  

r2 =
IMeasured

MPP

IAM1.5G
SC

(6) 

These are novel metrics for evaluating PV performance under haze at 

Table 3 
Laboratory instruments used in the literature for experimental measurements of 
haze impacts on solar PV.  

Equipment Application in examining haze Ref. 

Spectroradiometer Spectrum measurement [26, 106] 
Pyranometer, silicon 

sensor 
Measuring GHI and DHI [26, 27, 79, 

89, 106] 
Pyrheliometer Measuring DNI [27] 
Two-axis sun tracker Sun tracking for irradiance 

measurements 
[27] 

Automatic sun 
photometer 

Measuring AOD, Angstrom coefficient, 
SSA, Asymmetry factor, concentration of 
aerosols and water vapor data 

[27] 

Ultrasonic 
anemometer 

Measuring Vwind (wind velocity) [27] 

ICPMS instrument For elemental components analyses [55] 
I-V meter, Shunt/ 

transducer 
Measuring cells current and voltage [26, 27, 79, 

89, 103-105] 
Energy meter Measuring power and performance ratio [26, 79, 89] 
Datalogger For saving measured data [27, 103-105]  
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the same time points. Statistical analysis [100] was established by to 
simply compare r1 and r2, where r1 (Eq. 4) is short-circuit current 
generated under real world spectrum (IReal Spectrum

SC ) divided by theoretical 
short-circuit current generated under AM1.5G spectrum (IAM1.5G

SC , calcu
lated by Eq. 5, where INominal

SC is nominal ISC specified on modules speci
fication sheet and Gmeasured is the measured irradiance by sensor). 
Moreover, they measured DC-generated currents of PV modules 
(IMeasured

MPP ) and the irradiance induced on the modules, then the r2 ratio 
was defined in (Eq. 6). Their two statistical analyses to establish the 
correlation between r1 and r2 were locally weighted scatterplot 
smoothing (LOESS) and cubic smoothing spline with ten knots, both 
integrated with Pearson correlation coefficient (PCC) to validate the 
correlation between parameters. 

At the same time, Ye et al. [46] analysed the solar spectrum and its 
effect on the efficiency of PV modules by considering various technol
ogies, including single-j a-Si, CdTe, CIGS, and double-j micromorph Si 
(a-Si/μc-Si). Two different approaches, including spectral mismatch 
factor (MMF) [139] and the short-circuit current (Isc), were used to 
measure the EIR (Eq.2) of these four PV technologies at a function of 
time (t). The former is based on the MMF determined from the spectrum 
at outdoor conditions and the modules’ indoor spectral responses (SRs). 
The spectral MMF can adapt the irradiance intensity of a test device 
receiving a non-standard spectrum with irradiance intensity needed 
under the standard spectrum. In contrast, standard test devices deliver 
the same current under both irradiance levels. The EIR based on MMF 
(EIRMMF

t ) is calculated based on Eq. 7, which G′

MMF can be calculated 
from Eq. 8. 

EIRMMF
t =

∑

t
G′

MMF
∑

t
G

(7)  

G′

MMF =MMF × G (8) 

The latter method established on the modules’ ISC is measured in 
outdoor conditions. The irradiance spectrum’s divergence from the 
standard spectrum affects the module’s ISC. Hence, the ISC loss or gain 
compared to AM1.5G radiation reveals how the non-standard spec
trum’s effective irradiance intensity differs from the AM1.5G spectrum. 
The EIR based on ISC (EIRISC

t ) is calculated based on Eq. 9, in which G′

ISC 

can be calculated from Eq. 10. θmod
STC and ISTC

SC denote module temper
ature and short-circuit currents at STC, GSTC is the irradiance with the 
AM1.5G spectrum,θmod is module’s temperature, and α ISC is the tem
perature coefficient for the short-circuit current. 

EIRISC
t =

∑

t
G′

ISC

∑

t
G

(9)  

G′

ISC =
ISC

(
G, θSTC)

ISTC
SC

× GSTC =

ISC

(1+α(θmod − θSTC
mod)

ISTC
SC

× GSTC (10)  

2.1.3.1.2. Power output modeling. The pvlib-Python model flowchart is 
presented in Fig. 7 [84, 85] and was utilized by Li et al. [24] to calculate 
the POAI induced on PV modules. pvlib [78, 84-86] is an open-source 
MATLAB and Python based tool for simulating performance of PV sys
tems. Researchers used this tool for calculating POAI [24] and hourly 
clear sky irradiance (GHIcs, DNIcs, and DHIcs) [83]. Input data for the 
pvlib model are irradiance and weather data. The latest release of this 
software can be accessed through [140, 141]. The models used in pvlib 
are Sandia PV Array Performance Model (SAPM) [107] and Performance 
Model for Grid-Connected Photovoltaic Inverters [108]. Li et al. [24] 
derived surface irradiance data (period of 2003-2014 in China) from 
CERES [142, 143] and investigated the impact of fixed tilt angles and 
tracking PV systems in their research. 

Sweerts et al. [110] presented a fully justified methodology based on 

Fig. 6. A framework for outdoor and indoor electrical experiments.  
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the Global Solar Energy Estimator (GSEE) [62] open-source model 
implemented in renewable.ninja [144]. GSEE [62] is a Python-based 
model, which converts hourly irradiance data into hourly power 
output. The flowchart of this model is presented in Fig. 8. The latest 
version of GSEE can be accessed through the following references [111, 
145]. Radiation datasets from 1960 to 2015 in the mainland of China 
were utilized [110] to compute CF of residential PV systems and 
utility-scale PV power plants. CF is the actual generation of PV system 
divided by the maximum generation of PV system under laboratory 
conditions. Also, in their modeling, different panel orientations were 
considered. 

In 2020, Del Hoyo et al. [21] conducted a comprehensive 
site-specific study in Santiago de Chile. They collected metrological data 
using some field measurements from 2014 to 2016 from two university 
campuses. Then, PV output monitoring was conducted at one campus 
using two different types of modules: mono c-Si and thin film a-Si. In the 
next step, modeling methods were utilized, in which the algorithm of 
Reno et al. [77] was employed for filtering out cloudy periods. To obtain 
AOD values and compare AOD loads in different locations, the MAIAC 
developed by NASA [53] was used. SMARTS2 model [68] was also 
utilized for investigating clear sky irradiance. Finally, for calculating the 
aforementioned PV technologies outputs, Klucher [115] model and 
NREL [109] (Eq. 11) were used. 

PPV =PSTC

(
POAI
POAI0

)(
1 −

δPV

100
(θavg

mod − θmod)
)

(11)  

where PPV is the potential panel output, PSTC is the power at STC, POAI is 
the irradiance incident on the solar module, POAI0 stands for reference 

irradiance, δPV stands for the temperature coefficient of power, and θavg
mod - 

θmod defined as differences of annual average and operating module 
temperatures. To calculate θmod for flat PV modules, equation (Eq. 12) 
by King et al. [146] should be used: 

θmod = θm +
POAI
POAI0

× Δθcnd (12)  

θm =POAI ×
{

e(aPV+bPV×Vwind)
}
+ θamb (13)  

where θm is the temperature of the module’s back surface and can be 
calculated from Eq. 13, Δθcnd is the temperature differential between the 
module temperature and the module’s back surface at a 1000 W/m2 

irradiance level, aPV is the coefficient determined empirically that es
tablishes the upper limit on module temperature when wind speeds are 
low and solar irradiance is high, bPV is the coefficient determined 
empirically at which module temperature decreases as wind speed in
creases, and Vwind is wind velocity at a height of 10m, and θamb is the 
ambient temperature. At the same time, Fernandez et al. [117] equation 
(Eq. 14) was employed for simulating high concentrator photovoltaic 
(HCPV) potential power output (PCPV), 

PCPV =
PSTC

DNISTC
×
(
1 − δCPV

(
θmod − θSTC

mod

))
× (1 − εCPV (AM − AMu))

×
(
1 − φCPV

(
AOD550 − AOD550,u

))
(14)  

θmod = θamb + αCPV × DNI + βCPV × Vwind (15)  

where DNI STC is direct normal irradiance at STC conditions, δCPV is the 
cell temperature coefficient, θSTC

mod is the cell’s temperature at STC 

Fig. 7. Flowchart of PVLIB.  
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conditions, εCPV is the air mass coefficient, AM is defined as the air mass, 
AMU is defined as the umbral air mass, φCPV is the AOD coefficient, AOD 
550 is defined as the AOD at 550 nm and AOD 550,U is described as the 
umbral AOD at 550 nm. To calculate θmod for CPV modules, Eq. 15 [147, 
148] should be used, in which V wind is the wind speed, and αCPV and 
βCPV are the coefficients specific to CPV module, which should be ob
tained empirically. In 2020, Wu et al. [112] used quantitative methods 
to quantify the effect of haze on PV modules in China. Their analysis was 
conducted based on data samples of PV power plants in Hangzhou and 
Tianjin in China. To identify irradiance changes caused by haze, they 
used the exponential-linear model [149], [150]. 

2.1.3.2. Empirical models. Empirical models are one of the tools pro
posed in the literature to evaluate the impact of PM on irradiance. These 
models were developed based on experimental results and statistical 
analysis. For instance, Peter et al. [42] derived an empirical equation 
(Eq.16) for calculating irradiance on hazy days. This equation was used 
by Chen et al. [106] as well to estimate irradiance in China. Similarly, 
Wu et al. [112] proposed some experimental equations for China to 
calculate irradiance based on PM2.5. Son et al. [151] presented some 

empirical equations for South Korea, correlating PV power generation to 
DNI, temperature, PM2.5, PM 10, and relative humidity. Still, indoor or 
outdoor experiments can derive more empirical equations for different 
locations and applications. 

Peters et al. [42] conducted field measurements in Delhi to obtain PM 
2.5 to define the empirical correlation between irradiance loss and PM 
concentrations. Furthermore, they collected data from various online 
sources [152-156] to project losses in other locations. Their methodol
ogy for correlating PM 2.5 and loss in irradiation exposure is based on 
Ref [79], by which Peters et al. [42] presented empirical Eq. 16 based on 
their analyses. Chen et al. [106] and Nocerino et al. [157] used Eq. 16 as 
well. 

GPM2.5

G0
= exp

(
− PM2.5
750 ± 90

)

Delhi, India (16)  

GPM2.5

G0
= exp

(
− PM2.5

250

)

Naples, Italy (17) 

In Eq. 16 & 17, GPM2.5 and G0 represent measured irradiance during a 
hazy day and clean day, respectively, and PM2.5 is the concentration of 

Fig. 8. Flowchart of GSEE.  
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particles smaller than 2.5 μm. However, Peters et al. [42] note that Eq. 
16 is only valid for Delhi, and more studies are needed to investigate 
how Eq. 16 need to be adapted for other locations. Using the afore
mentioned methodology, firstly, they calculated relative losses in inso
lation using field measurements, modeling, and estimations. Then, using 
obtained relative values integrated with POAI, and PV panels power 
potential data [158], they estimated the loss in PV modules with an 
optimal angle. 

2.2. Forecasting 

The increasing demand for PV power worldwide will require both 
short-term and long-term forecasting to provide practical guidelines 
facilitating increasing PV deployment velocity. Therefore, forecasting 
the PV power plants’ output operating under a hazy environment can be 
considered an important area of research. Different methodologies for 
forecasting the impact of haze on solar power generation can be 
employed like persistence [159] and ARIMA [160] deployed by Nobre 
et al. [89], artificial neural network (ANN) by Junhyuk et al. [91], and 
SVR machine learning by Wenjie et al. [74]. 

In 2015, seminal contributions were made by Nobre [90] in the 
assessment of haze on PV forecasting by combining the persistence 
[159] and ARIMA [160] models. Persistence is one of the simplest 
methods relying on time-series data for forecasting when data patterns 
vary slightly. While having more flexibility than persistence in handling 
different time series patterns, ARIMA is one the most powerful models 
for forecasting future values of a variable based on univariate past values 
of time series (auto-regression model) and past forecast errors in a 
regression-like model (moving average model). It is noted that ARIMA 
forecasting performs best in situations with irregular irradiance pat
terns, whereas persistence forecasting performs better in conditions of 
dense cloud cover or clear sky. The hybrid algorithm chooses the 
optimal solution adaptively and hierarchically depending on both 
persistence and ARIMA. In subsequent work, Nobre et al. [89] studied 
the performance of PV modules in the tropical and highly dense envi
ronment of Singapore. The architecture of this study based on Nobre’s 
Thesis [90] is presented in Fig. 9, which would be practical for re
searchers to develop this subject in their regions of interest with specific 
PV technologies. Various factors, including PV structure, temperature, 
shading, long-term degradation, and pollution concentration, were 
considered to model short-term solar forecasting of reliable PV power 
generation. Also, the Perez model [97] was employed for short-term 
irradiance forecasting and generating POAI. In this study, persistence 
(yearly average normalized RMSE in this study is 30.8%) and ARIMA 
(yearly average nRMSE:30%) [160] forecasting were proposed for 
determining future changes in PV power conversion. Finally, the model 
was tested using a hybrid ARIMA-persistence forecast approach (yearly 
average nRMSE:29%) by considering various factors recorded using a 
meteorological sensing network in the understudied area. Their results 
showed that an integrated method containing a climate measuring sys
tem and a storm alarm system (based on ambient humidity and air 
pressure) can provide better results with the lowest errors. Moreover, 
the results of the nRMSE showed that the integrated method is more 
reliable than the persistence and ARIMA methods separately. 

In recent years, in the light of short-term forecasting and data science 
methods, a feed-forward-multi-layer ANN [92] was employed by Jun
hyuk et al. [91] to forecast the output of PV power plants considering PM 
parameters. PCC analysis was applied to meteorological data to verify 
correlations between output and PM. The input layers in their model are 
irradiance, weather data, PM concentration, measured PV power gen
eration in the past. They managed to improve the accuracy of PV power 
generation by developing some models. Furthermore, a machine 
learning support vector regression (SVR) algorithm [92, 93] utilized by 
Liu et al. [74] to establish a direct link between climatic variables and PV 
output, thereby improving the precision of PV generation. SVR is based 
on support vector machine (SVM) concepts, which is best suitable for 

linear data. To analyse meteorological elements and calculate PM con
centration values, the weather research and forecasting coupled with 
chemistry (WRF-CHEM) [75, 76] was employed as well. Their proposed 
forecasting model is shown in Fig. 10. Their results indicated that the 
suggested method could significantly enhance the accuracy of PV power 
forecasting under haze, consequently assisting the dispatch and opera
tion of the power grid. 

Although preliminary works have been done to forecast future im
plications of haze on PV power generation, more comprehensive 
research should be conducted on different AI methodologies, especially 
in the area of "long-term forecasting" to prepare appropriate tools, plans, 
and strategies for solar energy investors and stack holders predicting the 
impact of aerosol on their future projects. For future studies, advanced 
ANN methods can be developed for accurate forecasting, such as multi- 
layer perceptron (MLP) models [161]. Of particular interest is to 
investigate the impacts of future PV penetration on a haze positive 
feedback loop. As more PV is deployed to offset coal and natural 
gas-fired power plants [162, 163], as PV-powered heat pumps offset 
natural gas furnaces [164-167] and as PV is used for smart charging of 
electric vehicles that displace gasoline and deisel vehicles [168-172], PV 
perfromance would be expected to increase based on redution in haze 
from these sources. This would improve the PV system economic per
formance and thus accelerate the replacement of polluting fossil-fuel 
sources of energy with more solar PV. It is worth noticing that the 
studies in this context are limited to PV technology. Further in
vestigations can also be conducted on other solar energy technologies 
such as low-concentration PV (LCPV) [173-177], high-concentration PV 
(HCPV) or concentrated solar power (CSP) [117, 118, 147, 148]. 

3. Worldwide effects of haze on the output OF PV systems 

3.1. Geographical-associated haze 

Some countries naturally experience haze owing to their specific 
geographic characteristics. Others are caused by human activity. For 
example, Singapore [79, 89], Malaysia [40, 105], Australia [15], Can
ada [16] and the U.S. [83]. suffer from bushfire smoke resulting from 
human-made forest fires or agricultural burns. China [24, 71, 110, 112] 
and India [42, 55, 178] are undergoing urban haze due to pollution from 
high population densities and intense rates of industrialization with 
limited emission regulations and controls. There are reports regarding 
bushfire haze and urban effects on PV systems in these countries. Nobre 
et al. [79] evaluated the effects of haze on the efficiency of PV modules in 
Singapore [79], which indicated that GHI levels decreased by 15% 
during a June 2013 haze occurrence. While the θamb was marginally 
higher during haze periods than on clear sky days, module temperature 
was lower, most likely due to a reduction in direct irradiance reaching 
the module surfaces. 

Solar energy is typically considered to be approximately constant 
over long periods. However, there is clear evidence for significant multi- 
decadal changes, called ’global dimming and brightening’, because of 
variations in cloud features and aerosol concentrations in the atmo
sphere [179, 180]. Rising anthropogenic aerosol emissions are a major 
source of significant dimming in fast-growing and polluted places like 
China. 

In 2017, Li et al. [24] reported a significant depletion in PV output 
due to aerosols in China. Notably, in the Eastern Grid of China, the most 
significant impact on the direct irradiance could be observed, where it 
relatively dropped by 80%. The evidence from [24] highlighted that 
considering the high demand for electricity and severe air pollution in 
Western China, aerosols affected this area by reducing POAI up to 35%. 
In the evaluations of the impact of aerosols on tracking systems, with 
respect to the point that tracking systems mainly operate with direct 
irradiance, it was shown that aerosols decreased the electricity output of 
tracking PV systems more (both one and two axes tracking systems) 
more than when compared to fixed arrays systems. It was indicated that 
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Fig. 9. Structure of Andre M. Nobre’s methodology to forecast PV power generation in tropical climate zone (Figure reproduced from [89, 90]).  
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there is an average 21% reduction of POAI for fixed systems and 34% for 
two axes over eastern China yearly. The vital role of clouds on surface 
radiation was also observed, where during the winter, the impact of 
aerosols on solar resources over the Northern Grid and the Eastern Grid 
of China is the same as clouds. They concluded that when considering 
the high potential of western China for solar energy generation, signif
icant impacts of aerosols on direct POAI across this region should be 
considered. 

In 2019, Sweerts et al. [110] concluded that air pollution resulted in 
an average reduction of 11–15% in PV power potential between 1960 
and 2015 in the mainland of China. The link between observed surface 
radiation and sulfur dioxide and black carbon emissions points to air 
pollution control regulations and carbon footprints reduction strategies 
as essential tools to increase surface irradiance. Their surprising results 
imply that returning China’s radiation levels to those of the 1960s could 
result in a 12–13% boost in PV energy generation in this country [110], 
corresponding to an additional 14 TWh of power generated with 2016 
PV capacity and 51–74 TWh with expected 2030 PV capacity. As of 
2016, China had more than 445 million households [181, 182] each 
person consumed almost 610 kWh [183](each household consumed 
almost 1900 kWh; therefore, that 14 TWh of PV losses caused by urban 
haze in 2016, could provide additional electricity of more than 7.3 
million households in that year or almost 23 million people. Finally, 
upon reaching surface irradiance levels of 1960 could yield economic 
gains of US$1.9 billion in 2016 and US$4.6–6.7 billion in 2030. These 
results raise important questions about liability for polluters that are 
responsible for the economic losses resulting from pollution-caused haze 
on PV owners. This is an area important to policy makers for future 
work. 

Del Hoyo et al. [27] in 2020 showed that haze decreased GHI and DNI 
by 3.5 % and 14.1% in Chile, respectively, while DHI increased by 35.4% 
simultaneously. Mono c-Si and a-Si PV technologies experienced a 7.2% 
and 8.7% reduction in their annual outputs. Finally, a noteworthy 
impact on PV modules due to aerosols has been reported in Chile [27], in 
which CPV power production was primarily affected by aerosols. i.e., a 
16.4 % reduction in the annual output of this system was measured. This 
is in line with Li et al. [24] results because of more sensitivity of CPV 
systems to DNI, as previously reported that DNI decreased more than 
GHI and DHI, hence this outcome is evident. Son et al. at the same time 
[151] showed that PM10 and PM2.5 lead to a reduction in power gen
eration by 14.2% - 14.9% for Yeongam installation and 9.8% - 16.1% for 
Eunpyeong installation in South Korea, respectively. Recent studies in 

China show severe effects of urban and anthropogenic haze on PV sys
tems. Wu et al. [112] implied that the PV output of power plants in 
Hangzhou, decreased by 5.25 ± 1.19% and 6 ± 1.16% due to urban 
haze in 2017 and 2018, respectively. Furthermore, the effect of urban 
haze on PV power plants was more severe in Tianjin, where had expe
rienced PV power reduction of 8.77 ± 0.9% for one year since Dec 2018. 

3.2. Global haze 

It is clear that the haze phenomenon is not limited to specific 
countries and is common worldwide. Shaddick et al. [184] reported that 
half of the world’s population is experiencing increasing air pollution. 
Global haze as well [185] contributed to the growing trends in global 
warming, and these two are tied together. As PV performance also de
creases with temperature, global warming, in general, reduces PV per
formance (although in snowy regions, it can decrease snow-related 
losses [186-191]). There are comprehensive studies in the literature 
covering the worldwide haze in their investigations of PV systems. 
Bergin et al. [55] in 2017 reported that PM affecting PV systems is pri
marily constituted of dust (92%), minor contributions from organic 
carbon (4%), ions (4%), and elemental carbon (0.01%). They proved 
that ambient and deposited PM on PV modules (i.e. soiling) have almost 
the same contributions in decreasing PV energy production [55]. 

In Fig. 11, there are important results discussed by Bergin et al. [55], 
which illustrates the effect of deposited and ambient PM on the trend in 
available energy for annual solar energy generation worldwide. Gener
ally, both dusty and polluted regions have experienced noticeable ef
fects, with significant declines in northern India, which is affected by 
both. Finally, their findings imply huge destructive impacts (irradiation 
degradation and soiling) of urban PM on PV performance, where a 17-25 
% reduction in energy production has been reported across India (~1 
GW loss) and China (~11 GW loss). 

In 2018, Peters et al. [42] showed that Delhi, Beijing, and Singapore 
could experience a reduction of solar irradiance of 11.5 %, 9.1 %, and 
2%, respectively. For other locations, Fig. 12 illustrates relative insola
tion losses, PPV reductions, and POAI absolute values along with the 
losses in POAI. A method is needed whereby the economic losses for PV 
power generators would be compensated by prorating the liability of 
haze generators by their ratio of total emissions. Considerably more 
research is needed in this area, although there have been some attempts 
to quantify the economic losses PV generators suffer from haze in 
addition to those mentioned above. Peters et al. [42] estimations on 
revenue losses to PV power plants stack holders caused by urban haze in 
2016, revealed about 0.78, 0.37, 2.4, 2.1, and 5.9-9.3 U.S. million dol
lars losses for Delhi (India), Kolkata (India), Beijing (China), Shanghai 
(China) and Los Angeles (US), respectively [42, 192, 193]. 

A recent study by Peters and Buonassisi [59] indicated that by the 
end of the century, the reduction in PV power performance considering 
different scenarios can range between 0.37 % and 2.5 % [0.37 % to 1.25 
% for CdTe and 0.7 to 2.5 % for c-Si] due to the presence of water and 
aerosols in the atmosphere and global temperature rise. A specific 
objective for PV installations is to continue to focus on more efficient 
solar cell technologies and the development of solar energy infrastruc
ture. In Fig. 13a by Peters and Buonassisi [59], a consistently more 
significant drop in insolation of east of 100 ◦E is seen, with insolation 
reduces by almost 0.8 W/m2 per year compared to the remaining re
gions. Additionally, an average global warming rate of 0.02 K per year 
was derived. As demonstrated in Fig. 13b, an upsurge in TPW is 
observed, which results in the reduction of TTPW throughout the majority 
of the Northern and Southern hemispheres. On the other hand, the ex
amination of TAOD points to more transmission in most of the earth. It 
was, however, noted that transmission changes due to aerosols are the 
most difficult to quantify. As a final point displayed in Fig. 13c, yields 
increased in South America and Africa and some regions of Europe but 
decreased in Northern Africa and America, whereas PR for the investi
gated Si PV technology decreased by an average of 0.04 % annually from 

Fig. 10. Process of model training and power forecasting considering aerosols 
(reproduced from [74]). 
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2006 to 2015. 
Table 4 summarises a wide range of publications from all over the 

world collaborating to understand the impact of haze on PV perfor
mance by comparing year of publication, their location of study, time 
span of analysis and experiments, the used solar technology and module 
settings, haze concentration within the period of analysis, haze degra
dation indicator such as Pout, CF, or POAI, and reduction rate in the 
parameters along with reasons for the degradation. 

4. Solutions to haze 

There are well-known solutions in the literature to overcome haze 
and its associated consequences on PV power plants, including miti
gating air pollution levels by employing renewable energy sources [24, 
112] and preventing and controlling dust storms [28, 40, 195-199] and 
bushfires [26, 40, 46, 105, 200-203]. Since haze is mainly caused by 
emissions, defining policy measures and plans to reach net-zero carbon 
will have a positive impact not only on increased temperature losses on 
PV but also on haze-related PV losses. Furthermore, it is clear that na
tional and local strategies and policies in each country to reduce carbon 
and PM emissions would positively impact PV performance. For 
example, polluted cities such as Delhi and Beijing are more affected by 
the haze. Numerous policymakers are now taking action to address air 
pollution concerns in these cities. As many cities across the world have 
proven that committed policies and the utilization of renewable energy 
systems can enhance air quality. Vitoria-Gasteiz in Spain, Montreal in 
Canada, Lisbon in Portugal, Medellin in Colombia, and Seoul in South 
Korea are notable examples of cities that have reduced air pollution from 
28% to 63% [204]. China has established an effective plan against 
anthropogenic haze, which appears to be working in areas such as Bei
jing and Tianjin [42, 205, 206]. In places where anthropogenic haze is a 
significant issue, emissions restrictions would also be required to boost 
solar energy generation. Similar to concerns of carbon emissions liability 
[207-214], as PV power generation becomes more ubiquitous, there are 
unanswered questions about the liability of haze generators for 

reduction in output of both PV systems (as well as the reductions in 
agricultural output in India [215, 216], the U.S. [217, 218], and China 
[219, 220]). Decision-makers should implement pollution controls in 
light of the enormous potential benefits to public health, air quality and 
solar energy generation [55]. For example, by replacing all coal-fired 
power plants with PV in the U.S. generating an equivalent amount of 
electricity, over 52,000 premature deaths per year would be prevented 
[221]. Globally, high levels of political efforts have been made such as 
2015 United Nations climate change conference (COP 21) [222] and 
COP 26 [223]. Serious actions to reach these conferences’ goals, how
ever, must be taken. 

Other important solutions are to deploy more efficiencient technol
ogies for areas frequently experiencing haze or develop and use new 
solar energy technologies with higher efficiencies. As discussed in this 
paper, higher band-gap PV technologies are more vulnerable to haze. 
This outcome could lead to PV manufacturers designing PV modules that 
perform better (efficiency-wise) in the regions that experience frequent 
haze, as proposed by Zhang et al. [49]. Moreover, in terms of electricity 
grid reliability, and because scattering and extinction of light caused by 
air pollution reduce the available solar resource, current solar-powered 
applications operating under haze conditions have reliability concerns 
that are an obstacle to distributed solar energy power grid [42, 224, 
225]. Hence, a more reliable electricity grid can be had by increasing the 
efficiency of solar cells and reducing PV systems’ vulnerability to haze 
[59]. 

The accumulation of haze particles on PV modules (considered 
soiling) is a considerable effect that should not be neglected. A study by 
Bergin et al. [55] proves that increasing the time for solar panels 
cleaning could reduce the output of these systems considerably, high
lighting the significance of solar PV system cleaning in areas with high 
levels of dust and anthropogenic PM. As a result, a cleaning schedule 
should be a point of attention for solar power plants in some regions to 
reduce losses. Different cleaning methodologies have been presented in 
the literature [226-231] and employing new efficient technologies for 
dust removal and cleaning can be convenient way to overcome problems 

Fig. 11. Annual reduced visible solar energy as a result of ambient and accumulated particulate matter (figure from [55] ,31 samples collected during February and 
March 2016 in Ahmadabad, India) 
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associated with soiling, such as electrostatic dust removal system (EDS) 
[232, 233], robotic cleaning [234], or anti-soiling coatings such as super 
hydrophobic [235] and super hydrophilic materials [236]. 

5. Future studies 

Researchers have made great efforts to quantify the impact of haze 
on PV energy generation, there are still numerous research gaps in this 
context, which are crucial to be addressed in the future to help accel
erate a sustainable future. According to the comprehensive literature 
review performed here, the following insghts can be suggested in future 
studies:  

1. Sizing of PV power plants for different climate zones should consider 
haze and air pollution in the future, as different PV technologies sre 
affected differently by haze. For example, for low pollution regions, 
higher bandgap solar cells may be the optimal choice.  

2. New clear sky models such as [128] can be used for investigating the 
effect of haze on PV modules and their results can be compared to 
previously used models [27, 77, 79]. 

3. Controlled indoor experiments in laboratory conditions can be con
ducted to correlate PV output and haze density (particulate matter 

and aerosol concentration) by defining relationships between PV 
output and haze concentration by investigating I-V characteristics.  

4. Both short-term and long-term forecasting of haze implications on 
PV modules can be developed based on AI methodologies to prepare 
applicable tools and strategies for solar energy investors. For 
instance, advanced ANN such as MLP [161] methods can be devel
oped for accurate forecasting of PV power plants experiencing severe 
haze.  

5. For future studies, impact of haze on spectral albedo [237-240] and 
its consequences on PV output should be investigated in more refined 
researches.  

6. Forecasting the impact of haze on the other solar energy technologies 
such as LCPV-HCPV [117, 118, 147, 148, 173-177] should be dis
cussed in the future.  

7. The role of different weather conditions such as rainy, cloudy 
weather and snowy weather conditions on the impacts of haze on PV 
generation has not been investigated yet. In furture studies, corre
lation between various weather conditions and haze can be consid
ered to obtain a more complete understanding of the impact of haze 
on PV power generation.  

8. Developing energy policy is needed that provides useful strategies to 
minimize haze and air pollution in communities, such as China Air 
Oollution Plan [42, 205, 206], which reduces haze effects on the PV 
industry. For example, future research studying the effects of haze on 
PV modules should cover financial analysis based on the levelized 
cost of electricity to quantify the liability for haze-generating 

Fig. 12. Relative insolation losses for 16 cities, PPV, loss and POAI with absolute loss in POAI (data from [42]).  

3 Direct link: https://pubs.acs.org/doi/10.1021, Further permissions related 
to the material excerpted should be directed to the ACS. 
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pollutors to promote sustainable development of renewable enegy 
across the world. 

9. More research is required for regions lacking information of the ef
fects of local haze and PV. Most of the research articles are limited to 
eastern Asia and China. Developing and reproducing these studies in 
other countries are required, particularly in the global south. For 
example, Australia, one of the pioneer countries in solar energy 
penetration [241], has recently suffered from bushfires and haze 
induced by these bushfires, while research on the impacts of PV there 
are lacking. One limitation to the deployment of such studies is the 
high cost of scientific equipment. In addition, to the satellite based 
approaches discussed above it is also possible to reduce the costs of 
experimental equipment with low open source cost climate stations 
[242] that helps improve the accessibility to underfunded scientists. 

6. Conclusion and recommendation 

This review paper conducted a thorough investigation on different 
methodologies that examine the effects of haze on PV energy generation, 
distinguished the critical results, and identified the research gaps. A 
variety of methods based on data analysis and experiments have been 
employed in the literature to examine potential changes in irradiance, 
spectrum and the output of PV technologies due to haze. Robust tools 
such as pvlib and GSEE can be employed for investigating the potential 
effects of haze on PV energy generation. It has been shown that aerosols, 
PM, and haze can considerably reduce PV systems’ output. Core findings 

in the literature can be reported as follows:  

1) Reduction in irradiance is the most dominant contribution of haze, 
followed by spectrum changes and soiling of PM in haze events.  

2) Generally, attenuation caused by haze in solar energy resources has 
been reported in the literature based on real-world data collection 
(up to 80% due to urban haze and 40% because of bushfire smoke).  

3) Due to spectrum changes, higher bandgap PV technologies are by 20- 
40% more affected by the presence of haze and aerosols in the at
mosphere than low bandgap semiconductors. Therefore, designing 
and establishing power plants in regions that experience haze pe
riods frequently would be more complicated, and more factors such 
as the spectral impacts should be considered.  

4) Substantial annual revenue loss to PV installers for different cities 
around the world in the scale of US million dollars have been found 
based on electricity value and local haze values. Although questions 
remain about the liability or polluters that results in haze-related PV 
losses.  

5) DNI is more heavily affected by haze. Therefore tracking and 
concentrated solar energy systems would be more affected by the 
haze than fixed tilt angle systems. 
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Fig. 13. Changes in PV power generation related parameters within the time span of 2006 to 2015. a) Changes in insolation and temperature b) direct TPW and AOD 
light transmission, and c) Y and PR (figures from [59]). 
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Table.4 
Summary of reports on the impact of haze on PV energy generation.  

Year Location Duration 
of Analysis 

PV Technology Module Setting PM Concentration 
range (PM10, PM2.5, 
PSI, AQI, or API) 

Target 
Parameter (s) 

Rate of Reduction 
by haze [%] 

Reason of 
Reduction 

Ref. 

2001 Iran 10 months Mono c-Si, 
Multi c-Si, Thin 
film 

Different tilt 
angles 

Not reported Pout [W] Up to 60 % Urban haze and 
Pollution 

[104] 

2014 Singapore 1 month a-Si Optimum angle Avg. PSI ≈50-200 PR [%] Up to 7 % for a-Si, Bushfire smoke [26] 
c-Si ≈ 0 % for c-Si 

2014 Singapore 1 month Single-j a-Si, Optimum angle Avg. PSI ≈50-200 EIR ≈ 2% for a-Si, Bushfire smoke [46] 
CdTe, ≈ 2% for CdTe, 
CIGS, ≈ 0% for CIGS, 
Double-j 
micromorph Si 

Slight increase for 
micromorph Si 

2015 Malaysia 1 month Mono c-Si Tracking PV, 
Fixed PV 

Max API=231 
Min API=65 
Avg. API=143 

Pout [W] 30 % for fixed Mono 
c-Si, 
25 % for tracking 
Mono c-Si 

Fire smoke [103] 

2016 Singapore 1 month c-Si wafer- 
based 

Optimum angle Avg. PSI ≈ 50-200 Pout [W] Up to 25 % Bushfire smoke [89] 

2016 Singapore 18 days Mono c-Si Optimum angle, 
Different tilt 
angles 

Avg. PSI ≈ 50-200 Y [kWh/kWp] ≈ 15 % mono c-Si, Bushfire smoke [79] 
Multi c-Si Up to 18.4 % multi 

c-Si, 
Mono hetero-j ≈ 18.7 % multi c-Si 

Het, 
Single-j a-Si Up to 21.4 % single- 

j, 
Triple-j a-Si Up to 24.7 % triple- 

j, 
Micro c-Si thin- 
film 

≈ 25.3 % micro c-Si 
thin film 

2016 China 1 year PV (not 
reported) 

Optimum angle PM2.5 (0- 35) μg/m3 Pout [W] ≈ 0 ref Urban haze [194] 
PM2.5 (35 -75) μg/ 
m3 

≈ 6.5 % 

PM2.5 (75-115) μg/ 
m3 

≈ 7.1 % 

PM2.5(115-250) μg/ 
m3 

≈ 30 % 

2017 Worldwide 1-3 months Thin film CIS, 
Multi c-Si 

Horizontal fixed - Available 
energy for solar 
generation 
[GW] 

17-25 % Urban haze [55] 

2017 Malaysia 1 months Mono c-Si Optimum angle Max PM 10=275.2 
μg/m3 

Min PM 10=23.2 μg/ 
m3 

Avg. PM 10=105.6 
μg/m3 

Pout [W] 17.8 % Bushfire smoke [105] 

2017 China 12 years PV, 
CSP 

Optimum angle 
fixed, One axis 
tracking, Two axes 
tracking 

Not reported POAI [kWh/ 
m2/day] 

Up to 80 % for 
direct POAI 
25-35 % for average 
POAI 

Urban haze [24] 

2018 Different 
locations 

19 months Si-PV Optimum angle 
fixed 

PM2.5 (50- 400) μg/ 
m3 

Absorbed 
photon flux [1/ 
m2.s] 

3.9-12.2 % Si-PV, Urban haze [42] 
GaAs 4.8-15.0 % GaAs, 
CdTe 5.2-16.1 % CdTe, 
Perovskite 5.5-17.2 % 

Perovskite 
2018 India 18 months Si PV Optimum angle For every PM2.5 100 

μg/m3 
Q Annual [kWh/ 
m2/day] 

12±3% Urban haze [178] 

Over 18 months 11.5% 
2019 China 55 years PV (not 

reported) 
Horizontal fixed, 
Optimum angle 
fixed, Horizontal 
tracking, 

Not reported CF [%] 11–15 % Urban haze [110] 

2020 Chile 2 years Mono c-Si Optimum angle 
for PV 

Not reported Pout, PPV, PCPV 

[W] 
7.2 % mono c-Si 
annually, 

Urban haze [27] 

a-Si 8.7 % a-Si annually, 
CPV 16.4 % CPV 

annually, 
2020 China 2 years PV (not 

reported) 
Optimum angle PM2.5 (25- 41) μg/ 

m3 
PPV [W] ≈ 0 ref Urban haze [112] 

PM2.5 (71- 109) μg/ 
m3 

≈ 6.14 % 

PM2.5 (125- 183)μg/ 
m3 

≈ 19.57 % 

≈ 46.1 % 

(continued on next page) 
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Table.4 (continued ) 

Year Location Duration 
of Analysis 

PV Technology Module Setting PM Concentration 
range (PM10, PM2.5, 
PSI, AQI, or API) 

Target 
Parameter (s) 

Rate of Reduction 
by haze [%] 

Reason of 
Reduction 

Ref. 

PM2.5 (156- 218) 
μg/m3 

Total 5.25-8.77% 
annually 

2020 Republic of 
Korea 

3 years PV (not 
reported) 

Optimum angle PM2.5 of 15 μg/m3 

and PM10 of 30 μg/ 
m3 

Pout [W] 9.8-16.1 % Urban haze [151] 

PM2.5 of 75 μg/m3 

and PM10 150 μg/m3 
15.6-23.7 % 

2020 China 4 years PV (not 
reported), CPV 

Optimum angle 
Fixed for PV 

Avg. PM 2.5= 50.8- 
99.5 μg/m3 

G [kWh/m2/ 
day] 

7 to 21.8 % annually Urban haze [71] 

2020 Italy 19 months PV (not 
reported) 

Optimum angle PM 2.5 mainly up to 
50 μg/m3 

Q Annual [kWh/ 
m2/day] 

5 % annually Urban haze [157] 

2021 USA 15 months PV (not 
reported) 

Optimum angle PM2.5 (50- 200) μg/ 
m3 

Pout,PPV [W] 9.4-37.8 % Bushfire smoke [83] 

2021 China 3 months PV (not 
reported) 

Optimum angle PM 2.5= 73 μg/m3 Pout [W] 39.7 % Urban haze [106] 
PM 2.5= 105 μg/m3 49.6 % 
Avg. PM 2.5= 35-75 
μg/m3 

Totally 8.1 % 

2021 Worldwide 10 years, 
100 years 

c-Si, CdTe Not discussed Not reported PR [%] From 2006-2015 
(10 years):0.4 % 

Haze, 
atmospheric 
water and global 
warming 

[59] 

By end of century 
(2100): 0.7-2.5 % c- 
Si, 0.38- 1.25 % 
CdTe  
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